Accelerate ⚡ your ML research using pre-built Deep Learning Models with Lux.
Boltz.ClassTokens
Boltz.MultiHeadAttention
Boltz.ViPosEmbedding
Boltz._fast_chunk
Boltz._flatten_spatial
Boltz._seconddimmean
Boltz._vgg_block
Boltz._vgg_classifier_layers
Boltz._vgg_convolutional_layers
Boltz.transformer_encoder
Boltz.vgg
MODEL NAME | FUNCTION | NAME | PRETRAINED | TOP 1 ACCURACY (%) | TOP 5 ACCURACY (%) |
---|---|---|---|---|---|
VGG | vgg |
:vgg11 |
✅ | 67.35 | 87.91 |
VGG | vgg |
:vgg13 |
✅ | 68.40 | 88.48 |
VGG | vgg |
:vgg16 |
✅ | 70.24 | 89.80 |
VGG | vgg |
:vgg19 |
✅ | 71.09 | 90.27 |
VGG | vgg |
:vgg11_bn |
✅ | 69.09 | 88.94 |
VGG | vgg |
:vgg13_bn |
✅ | 69.66 | 89.49 |
VGG | vgg |
:vgg16_bn |
✅ | 72.11 | 91.02 |
VGG | vgg |
:vgg19_bn |
✅ | 72.95 | 91.32 |
Vision Transformer | vision_transformer |
:tiny |
🚫 | ||
Vision Transformer | vision_transformer |
:small |
🚫 | ||
Vision Transformer | vision_transformer |
:base |
🚫 | ||
Vision Transformer | vision_transformer |
:large |
🚫 | ||
Vision Transformer | vision_transformer |
:huge |
🚫 | ||
Vision Transformer | vision_transformer |
:giant |
🚫 | ||
Vision Transformer | vision_transformer |
:gigantic |
🚫 |
:::tip
You need to load Flux
and Metalhead
before using these models.
:::
MODEL NAME | FUNCTION | NAME | PRETRAINED | TOP 1 ACCURACY (%) | TOP 5 ACCURACY (%) |
---|---|---|---|---|---|
AlexNet | alexnet |
:alexnet |
✅ | 54.48 | 77.72 |
ResNet | resnet |
:resnet18 |
🚫 | 68.08 | 88.44 |
ResNet | resnet |
:resnet34 |
🚫 | 72.13 | 90.91 |
ResNet | resnet |
:resnet50 |
🚫 | 74.55 | 92.36 |
ResNet | resnet |
:resnet101 |
🚫 | 74.81 | 92.36 |
ResNet | resnet |
:resnet152 |
🚫 | 77.63 | 93.84 |
ConvMixer | convmixer |
:small |
🚫 | ||
ConvMixer | convmixer |
:base |
🚫 | ||
ConvMixer | convmixer |
:large |
🚫 | ||
DenseNet | densenet |
:densenet121 |
🚫 | ||
DenseNet | densenet |
:densenet161 |
🚫 | ||
DenseNet | densenet |
:densenet169 |
🚫 | ||
DenseNet | densenet |
:densenet201 |
🚫 | ||
GoogleNet | googlenet |
:googlenet |
🚫 | ||
MobileNet | mobilenet |
:mobilenet_v1 |
🚫 | ||
MobileNet | mobilenet |
:mobilenet_v2 |
🚫 | ||
MobileNet | mobilenet |
:mobilenet_v3_small |
🚫 | ||
MobileNet | mobilenet |
:mobilenet_v3_large |
🚫 | ||
ResNeXT | resnext |
:resnext50 |
🚫 | ||
ResNeXT | resnext |
:resnext101 |
🚫 | ||
ResNeXT | resnext |
:resnext152 |
🚫 |
These models can be created using <FUNCTION>(<NAME>; pretrained = <PRETRAINED>)
All the pretrained models require that the images be normalized with the parameters mean = [0.485f0, 0.456f0, 0.406f0]
and std = [0.229f0, 0.224f0, 0.225f0]
.