Lux.jl

Julia & Lux for the Uninitiated

This is a quick intro to Lux loosely based on:

  1. PyTorch’s tutorial.
  2. Flux’s tutorial.
  3. Jax’s tutorial

It introduces basic Julia programming, as well Zygote, a source-to-source automatic differentiation (AD) framework in Julia. We’ll use these tools to build a very simple neural network. Let’s start with importing Lux.jl

using Lux, Random

Now let us control the randomness in our code using proper Pseudo Random Number Generator (PRNG)

rng = Random.default_rng()
Random.seed!(rng, 0)
Random.TaskLocalRNG()

Arrays

The starting point for all of our models is the Array (sometimes referred to as a Tensor in other frameworks). This is really just a list of numbers, which might be arranged into a shape like a square. Let’s write down an array with three elements.

x = [1, 2, 3]
3-element Vector{Int64}:
 1
 2
 3

Here’s a matrix – a square array with four elements.

x = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

We often work with arrays of thousands of elements, and don’t usually write them down by hand. Here’s how we can create an array of 5×3 = 15 elements, each a random number from zero to one.

x = rand(rng, 5, 3)
5×3 Matrix{Float64}:
 0.455238   0.746943   0.193291
 0.547642   0.746801   0.116989
 0.773354   0.97667    0.899766
 0.940585   0.0869468  0.422918
 0.0296477  0.351491   0.707534

There’s a few functions like this; try replacing rand with ones, zeros, or randn.

By default, Julia works stores numbers is a high-precision format called Float64. In ML we often don’t need all those digits, and can ask Julia to work with Float32 instead. We can even ask for more digits using BigFloat.

x = rand(BigFloat, 5, 3)
5×3 Matrix{BigFloat}:
 0.981339    0.793159  0.459019
 0.043883    0.624384  0.56055
 0.164786    0.524008  0.0355555
 0.414769    0.577181  0.621958
 0.00823197  0.30215   0.655881
x = rand(Float32, 5, 3)
5×3 Matrix{Float32}:
 0.567794   0.369178   0.342539
 0.0985227  0.201145   0.587206
 0.776598   0.148248   0.0851708
 0.723731   0.0770206  0.839303
 0.404728   0.230954   0.679087

We can ask the array how many elements it has.

length(x)
15

Or, more specifically, what size it has.

size(x)
(5, 3)

We sometimes want to see some elements of the array on their own.

x
5×3 Matrix{Float32}:
 0.567794   0.369178   0.342539
 0.0985227  0.201145   0.587206
 0.776598   0.148248   0.0851708
 0.723731   0.0770206  0.839303
 0.404728   0.230954   0.679087
x[2, 3]
0.58720636f0

This means get the second row and the third column. We can also get every row of the third column.

x[:, 3]
5-element Vector{Float32}:
 0.34253937
 0.58720636
 0.085170805
 0.8393034
 0.67908657

We can add arrays, and subtract them, which adds or subtracts each element of the array.

x + x
5×3 Matrix{Float32}:
 1.13559   0.738356  0.685079
 0.197045  0.40229   1.17441
 1.5532    0.296496  0.170342
 1.44746   0.154041  1.67861
 0.809456  0.461908  1.35817
x - x
5×3 Matrix{Float32}:
 0.0  0.0  0.0
 0.0  0.0  0.0
 0.0  0.0  0.0
 0.0  0.0  0.0
 0.0  0.0  0.0

Julia supports a feature called broadcasting, using the . syntax. This tiles small arrays (or single numbers) to fill bigger ones.

x .+ 1
5×3 Matrix{Float32}:
 1.56779  1.36918  1.34254
 1.09852  1.20114  1.58721
 1.7766   1.14825  1.08517
 1.72373  1.07702  1.8393
 1.40473  1.23095  1.67909

We can see Julia tile the column vector 1:5 across all rows of the larger array.

zeros(5, 5) .+ (1:5)
5×5 Matrix{Float64}:
 1.0  1.0  1.0  1.0  1.0
 2.0  2.0  2.0  2.0  2.0
 3.0  3.0  3.0  3.0  3.0
 4.0  4.0  4.0  4.0  4.0
 5.0  5.0  5.0  5.0  5.0

The x’ syntax is used to transpose a column 1:5 into an equivalent row, and Julia will tile that across columns.

zeros(5, 5) .+ (1:5)'
5×5 Matrix{Float64}:
 1.0  2.0  3.0  4.0  5.0
 1.0  2.0  3.0  4.0  5.0
 1.0  2.0  3.0  4.0  5.0
 1.0  2.0  3.0  4.0  5.0
 1.0  2.0  3.0  4.0  5.0

We can use this to make a times table.

(1:5) .* (1:5)'
5×5 Matrix{Int64}:
 1   2   3   4   5
 2   4   6   8  10
 3   6   9  12  15
 4   8  12  16  20
 5  10  15  20  25

Finally, and importantly for machine learning, we can conveniently do things like matrix multiply.

W = randn(5, 10)
x = rand(10)
W * x
5-element Vector{Float64}:
  1.2197981041108443
 -2.62625877100596
 -2.8573820474674845
 -2.4319346874291314
  1.0108668577150213

Julia’s arrays are very powerful, and you can learn more about what they can do here.

CUDA Arrays

CUDA functionality is provided separately by the CUDA.jl package. If you have a GPU and LuxCUDA is installed, Lux will provide CUDA capabilities. For additional details on backends see the manual section.

You can manually add CUDA. Once CUDA is loaded you can move any array to the GPU with the cu function (or the gpu function exported by Lux`), and it supports all of the above operations with the same syntax.

using LuxCUDA, LuxAMDGPU

if LuxCUDA.functional()
    x_cu = cu(rand(5, 3))
    @show x_cu
elseif LuxAMDGPU.functional() # Similarly, for AMDGPU
    x_amd = roc(rand(5, 3))
    @show x_amd
end
5×3 CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}:
 0.857126  0.681728  0.73806
 0.191956  0.506485  0.622865
 0.857257  0.663036  0.239756
 0.54452   0.503186  0.27993
 0.833518  0.975649  0.967811

(Im)mutability

Lux as you might have read is Immutable by convention which means that the core library is built without any form of mutation and all functions are pure. However, we don’t enforce it in any form. We do strongly recommend that users extending this framework for their respective applications don’t mutate their arrays.

x = reshape(1:8, 2, 4)
2×4 reshape(::UnitRange{Int64}, 2, 4) with eltype Int64:
 1  3  5  7
 2  4  6  8

To update this array, we should first copy the array.

x_copy = copy(x)
view(x_copy, :, 1) .= 0

println("Original Array ", x)
println("Mutated Array ", x_copy)
Original Array [1 3 5 7; 2 4 6 8]
Mutated Array [0 3 5 7; 0 4 6 8]

Note that our current default AD engine (Zygote) is unable to differentiate through this mutation, however, for these specialized cases it is quite trivial to write custom backward passes. (This problem will be fixed once we move towards Enzyme.jl)

Managing Randomness

We rely on the Julia StdLib Random for managing the randomness in our execution. First, we create an PRNG (pseudorandom number generator) and seed it.

rng = Xoshiro(0)     # Creates a Xoshiro PRNG with seed 0
Random.Xoshiro(0xdb2fa90498613fdf, 0x48d73dc42d195740, 0x8c49bc52dc8a77ea, 0x1911b814c02405e8, 0x22a21880af5dc689)

If we call any function that relies on rng and uses it via randn, rand, etc. rng will be mutated. As we have already established we care a lot about immutability, hence we should use Lux.replicate on PRNGs before using them.

First, let us run a random number generator 3 times with the replicated rng.

random_vectors = Vector{Vector{Float64}}(undef, 3)
for i in 1:3
    random_vectors[i] = rand(Lux.replicate(rng), 10)
    println("Iteration $i ", random_vectors[i])
end
@assert random_vectors[1]  random_vectors[2]  random_vectors[3]
Iteration 1 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]
Iteration 2 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]
Iteration 3 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]

As expected we get the same output. We can remove the replicate call and we will get different outputs.

for i in 1:3
    println("Iteration $i ", rand(rng, 10))
end
Iteration 1 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]
Iteration 2 [0.018743665453639813, 0.8601828553599953, 0.6556360448565952, 0.7746656838366666, 0.7817315740767116, 0.5553797706980106, 0.1261990389976131, 0.4488101521328277, 0.624383955429775, 0.05657739601024536]
Iteration 3 [0.19597391412112541, 0.6830945313415872, 0.6776220912718907, 0.6456416023530093, 0.6340362477836592, 0.5595843665394066, 0.5675557670686644, 0.34351700231383653, 0.7237308297251812, 0.3691778381831775]

Automatic Differentiation

Julia has quite a few (maybe too many) AD tools. For the purpose of this tutorial, we will use:

  1. ForwardDiff.jl – For Jacobian-Vector Product (JVP)
  2. Zygote.jl – For Vector-Jacobian Product (VJP)

Slight Detour: We have had several questions regarding if we will be considering any other AD system for the reverse-diff backend. For now we will stick to Zygote.jl, however once we have tested Lux extensively with Enzyme.jl, we will make the switch.

Even though, theoretically, a VJP (Vector-Jacobian product - reverse autodiff) and a JVP (Jacobian-Vector product - forward-mode autodiff) are similar—they compute a product of a Jacobian and a vector—they differ by the computational complexity of the operation. In short, when you have a large number of parameters (hence a wide matrix), a JVP is less efficient computationally than a VJP, and, conversely, a JVP is more efficient when the Jacobian matrix is a tall matrix.

using ComponentArrays, ForwardDiff, Zygote

Gradients

For our first example, consider a simple function computing $f(x) = \frac{1}{2}x^T x$, where $\nabla f(x) = x$

f(x) = x' * x / 2
∇f(x) = x  # `∇` can be typed as `\nabla<TAB>`
v = randn(rng, Float32, 4)
4-element Vector{Float32}:
 -0.4051151
 -0.4593922
  0.92155594
  1.1871622

Let’s use AbstractDifferentiation and Zygote to compute the gradients.

println("Actual Gradient: ", ∇f(v))
println("Computed Gradient via Reverse Mode AD (Zygote): ", only(Zygote.gradient(f, v)))
println("Computed Gradient via Forward Mode AD (ForwardDiff): ", ForwardDiff.gradient(f, v))
Actual Gradient: Float32[-0.4051151, -0.4593922, 0.92155594, 1.1871622]
Computed Gradient via Reverse Mode AD (Zygote): Float32[-0.4051151, -0.4593922, 0.92155594, 1.1871622]
Computed Gradient via Forward Mode AD (ForwardDiff): Float32[-0.4051151, -0.4593922, 0.92155594, 1.1871622]

Note that AD.gradient will only work for scalar valued outputs.

Jacobian-Vector Product

I will defer the discussion on forward-mode AD to https://book.sciml.ai/notes/08-Forward-ModeAutomaticDifferentiation(AD)viaHighDimensional_Algebras/. Here let us just look at a mini example on how to use it.

f(x) = x .* x ./ 2
x = randn(rng, Float32, 5)
v = ones(Float32, 5)
5-element Vector{Float32}:
 1.0
 1.0
 1.0
 1.0
 1.0

Construct the pushforward function. We will write out the function here but in practice we recommend using SparseDiffTools.auto_jacvec!

First we need to create a Tag for ForwardDiff. It is enough to know that this is something that you must do. For more details, see the ForwardDiff Documentation!

struct TestTag end

Going in the details of what is function is doing is beyond the scope of this tutorial. But in short, it is constructing a new Dual Vector with the partials set to the input to the pushforward function. When this is propagated through the original function we get the value and the jvp

function pushforward_forwarddiff(f, x)
    T = eltype(x)
    function pushforward(v)
        v_ = reshape(v, axes(x))
        y = ForwardDiff.Dual{
            ForwardDiff.Tag{TestTag, T}, T, 1}.(x, ForwardDiff.Partials.(tuple.(v_)))
        res = vec(f(y))
        return ForwardDiff.value.(res), vec(ForwardDiff.partials.(res, 1))
    end
    return pushforward
end

pf_f = pushforward_forwarddiff(f, x)
(::Main.var"##225".var"#pushforward#1"{typeof(Main.var"##225".f), Vector{Float32}, DataType}) (generic function with 1 method)

Compute the jvp.

val, jvp = pf_f(v)
println("Computed Value: f(", x, ") = ", val)
println("JVP: ", jvp[1])
Computed Value: f(Float32[-0.877497, 1.1953009, -0.057005208, 0.25055695, 0.09351656]) = Float32[0.3850005, 0.71437216, 0.0016247969, 0.031389393, 0.0043726736]
JVP: -0.877497

Vector-Jacobian Product

Using the same function and inputs, let us compute the VJP.

val, pb_f = Zygote.pullback(f, x)
(Float32[0.3850005, 0.71437216, 0.0016247969, 0.031389393, 0.0043726736], Zygote.var"#75#76"{Zygote.Pullback{Tuple{typeof(Main.var"##225".f), Vector{Float32}}, Tuple{Zygote.Pullback{Tuple{typeof(Base.Broadcast.materialize), Vector{Float32}}, Tuple{}}, Zygote.var"#3860#back#1233"{Zygote.ZBack{ChainRules.var"#slash_pullback_scalar#1558"{Vector{Float32}, Int64}}}, Zygote.var"#3796#back#1207"{Zygote.var"#1203#1206"{Vector{Float32}, Vector{Float32}}}}}}(∂(f)))

Compute the vjp.

vjp = only(pb_f(v))
println("Computed Value: f(", x, ") = ", val)
println("VJP: ", vjp[1])
Computed Value: f(Float32[-0.877497, 1.1953009, -0.057005208, 0.25055695, 0.09351656]) = Float32[0.3850005, 0.71437216, 0.0016247969, 0.031389393, 0.0043726736]
VJP: -0.877497

Linear Regression

Finally, now let us consider a linear regression problem. From a set of data-points ${ (x_i, y_i), i \in { 1, \dots, k }, x_i \in \mathbb{R}^n, y_i \in \mathbb{R}^m }$, we try to find a set of parameters $W$ and $b$, s.t. $f_{W,b}(x) = Wx + b$, which minimizes the mean squared error:

\[L(W, b) \longrightarrow \sum_{i = 1}^{k} \frac{1}{2} \| y_i - f_{W,b}(x_i) \|_2^2\]

We can write f from scratch, but to demonstrate Lux, let us use the Dense layer.

model = Dense(10 => 5)

rng = Random.default_rng()
Random.seed!(rng, 0)
Random.TaskLocalRNG()

Let us initialize the parameters and states (in this case it is empty) for the model.

ps, st = Lux.setup(rng, model)
ps = ps |> ComponentArray
ComponentVector{Float32}(weight = Float32[-0.5583162 0.3457679 0.50863314 0.60294497 0.23095794 0.16602759 5.5791984f-6 0.61324424 -0.35419345 0.039559156; -0.05661944 -0.4899126 0.31236076 0.47100115 -0.5062956 -0.20445547 -0.03762182 0.5370978 0.22614014 0.27704597; 0.5198015 0.55730057 -0.34535396 -0.21587563 -0.12729146 -0.51019937 0.46597028 0.2918885 0.20849374 -0.4068233; 0.06026341 -0.11202827 0.31218112 0.14536527 -0.3413506 0.40088427 -0.48716235 -0.15096173 0.42526972 -0.3576447; 0.23414856 -0.5949539 -0.26137677 0.21756552 0.34443143 0.25046515 -0.049256783 -0.48404032 0.08254115 -0.5224755], bias = Float32[0.0; 0.0; 0.0; 0.0; 0.0;;])

Set problem dimensions.

n_samples = 20
x_dim = 10
y_dim = 5
5

Generate random ground truth W and b.

W = randn(rng, Float32, y_dim, x_dim)
b = randn(rng, Float32, y_dim)
5-element Vector{Float32}:
  0.68468636
 -0.57578707
  0.0594993
 -0.9436797
  1.5164032

Generate samples with additional noise.

x_samples = randn(rng, Float32, x_dim, n_samples)
y_samples = W * x_samples .+ b .+ 0.01f0 .* randn(rng, Float32, y_dim, n_samples)
println("x shape: ", size(x_samples), "; y shape: ", size(y_samples))
x shape: (10, 20); y shape: (5, 20)

For updating our parameters let’s use Optimisers.jl. We will use Stochastic Gradient Descent (SGD) with a learning rate of 0.01.

using Optimisers

opt = Optimisers.Descent(0.01f0)
Descent(0.01f0)

Initialize the initial state of the optimiser

opt_state = Optimisers.setup(opt, ps)
Leaf(Descent(0.01), nothing)

Define the loss function

mse(model, ps, st, X, y) = sum(abs2, model(X, ps, st)[1] .- y)
mse(weight, bias, X, y) = sum(abs2, weight * X .+ bias .- y)
loss_function(ps, X, y) = mse(model, ps, st, X, y)

println("Loss Value with ground true parameters: ", mse(W, b, x_samples, y_samples))

for i in 1:100
    # In actual code, don't use globals. But here I will simply for the sake of
    # demonstration
    global ps, st, opt_state
    # Compute the gradient
    gs = gradient(loss_function, ps, x_samples, y_samples)[1]
    # Update model parameters
    opt_state, ps = Optimisers.update(opt_state, ps, gs)
    if i % 10 == 1 || i == 100
        println(
            "Loss Value after $i iterations: ", mse(model, ps, st, x_samples, y_samples))
    end
end
Loss Value with ground true parameters: 0.009175307
Loss Value after 1 iterations: 165.57005
Loss Value after 11 iterations: 4.351237
Loss Value after 21 iterations: 0.6856849
Loss Value after 31 iterations: 0.15421417
Loss Value after 41 iterations: 0.041469414
Loss Value after 51 iterations: 0.014032223
Loss Value after 61 iterations: 0.006883738
Loss Value after 71 iterations: 0.004938521
Loss Value after 81 iterations: 0.004391277
Loss Value after 91 iterations: 0.0042331247
Loss Value after 100 iterations: 0.0041888584

Appendix

using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(LuxCUDA) && CUDA.functional(); println(); CUDA.versioninfo(); end
if @isdefined(LuxAMDGPU) && LuxAMDGPU.functional(); println(); AMDGPU.versioninfo(); end
Julia Version 1.10.2
Commit bd47eca2c8a (2024-03-01 10:14 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 48 × AMD EPYC 7402 24-Core Processor
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver2)
Threads: 48 default, 0 interactive, 24 GC (on 2 virtual cores)
Environment:
  LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
  JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
  JULIA_PROJECT = /var/lib/buildkite-agent/builds/gpuci-14/julialang/lux-dot-jl/docs/Project.toml
  JULIA_AMDGPU_LOGGING_ENABLED = true
  JULIA_DEBUG = Literate
  JULIA_CPU_THREADS = 2
  JULIA_NUM_THREADS = 48
  JULIA_LOAD_PATH = @:@v#.#:@stdlib
  JULIA_CUDA_HARD_MEMORY_LIMIT = 25%

CUDA runtime 12.3, artifact installation
CUDA driver 12.3
NVIDIA driver 545.23.8

CUDA libraries: 
- CUBLAS: 12.3.4
- CURAND: 10.3.4
- CUFFT: 11.0.12
- CUSOLVER: 11.5.4
- CUSPARSE: 12.2.0
- CUPTI: 21.0.0
- NVML: 12.0.0+545.23.8

Julia packages: 
- CUDA: 5.2.0
- CUDA_Driver_jll: 0.7.0+1
- CUDA_Runtime_jll: 0.11.1+0

Toolchain:
- Julia: 1.10.2
- LLVM: 15.0.7

Environment:
- JULIA_CUDA_HARD_MEMORY_LIMIT: 25%

1 device:
  0: NVIDIA A100-PCIE-40GB MIG 1g.5gb (sm_80, 4.519 GiB / 4.750 GiB available)
┌ Warning: LuxAMDGPU is loaded but the AMDGPU is not functional.
└ @ LuxAMDGPU ~/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6/packages/LuxAMDGPU/sGa0S/src/LuxAMDGPU.jl:19


This page was generated using Literate.jl.