Training a Simple LSTM
In this tutorial we will go over using a recurrent neural network to classify clockwise and anticlockwise spirals. By the end of this tutorial you will be able to:
Create custom Lux models.
Become familiar with the Lux recurrent neural network API.
Training using Optimisers.jl and Zygote.jl.
Package Imports
Note: If you wish to use AutoZygote()
for automatic differentiation, add Zygote to your project dependencies and include using Zygote
.
using ADTypes, Lux, JLD2, MLUtils, Optimisers, Printf, Reactant, Random
Dataset
We will use MLUtils to generate 500 (noisy) clockwise and 500 (noisy) anticlockwise spirals. Using this data we will create a MLUtils.DataLoader
. Our dataloader will give us sequences of size 2 × seq_len × batch_size and we need to predict a binary value whether the sequence is clockwise or anticlockwise.
function create_dataset(; dataset_size=1000, sequence_length=50)
# Create the spirals
data = [MLUtils.Datasets.make_spiral(sequence_length) for _ in 1:dataset_size]
# Get the labels
labels = vcat(repeat([0.0f0], dataset_size ÷ 2), repeat([1.0f0], dataset_size ÷ 2))
clockwise_spirals = [
reshape(d[1][:, 1:sequence_length], :, sequence_length, 1) for
d in data[1:(dataset_size ÷ 2)]
]
anticlockwise_spirals = [
reshape(d[1][:, (sequence_length + 1):end], :, sequence_length, 1) for
d in data[((dataset_size ÷ 2) + 1):end]
]
x_data = Float32.(cat(clockwise_spirals..., anticlockwise_spirals...; dims=3))
return x_data, labels
end
function get_dataloaders(; dataset_size=1000, sequence_length=50)
x_data, labels = create_dataset(; dataset_size, sequence_length)
# Split the dataset
(x_train, y_train), (x_val, y_val) = splitobs((x_data, labels); at=0.8, shuffle=true)
# Create DataLoaders
return (
# Use DataLoader to automatically minibatch and shuffle the data
DataLoader(
collect.((x_train, y_train)); batchsize=128, shuffle=true, partial=false
),
# Don't shuffle the validation data
DataLoader(collect.((x_val, y_val)); batchsize=128, shuffle=false, partial=false),
)
end
Creating a Classifier
We will be extending the Lux.AbstractLuxContainerLayer
type for our custom model since it will contain a LSTM block and a classifier head.
We pass the field names lstm_cell
and classifier
to the type to ensure that the parameters and states are automatically populated and we don't have to define Lux.initialparameters
and Lux.initialstates
.
To understand more about container layers, please look at Container Layer.
struct SpiralClassifier{L,C} <: AbstractLuxContainerLayer{(:lstm_cell, :classifier)}
lstm_cell::L
classifier::C
end
We won't define the model from scratch but rather use the Lux.LSTMCell
and Lux.Dense
.
function SpiralClassifier(in_dims, hidden_dims, out_dims)
return SpiralClassifier(
LSTMCell(in_dims => hidden_dims), Dense(hidden_dims => out_dims, sigmoid)
)
end
We can use default Lux blocks – Recurrence(LSTMCell(in_dims => hidden_dims)
– instead of defining the following. But let's still do it for the sake of it.
Now we need to define the behavior of the Classifier when it is invoked.
function (s::SpiralClassifier)(
x::AbstractArray{T,3}, ps::NamedTuple, st::NamedTuple
) where {T}
# First we will have to run the sequence through the LSTM Cell
# The first call to LSTM Cell will create the initial hidden state
# See that the parameters and states are automatically populated into a field called
# `lstm_cell` We use `eachslice` to get the elements in the sequence without copying,
# and `Iterators.peel` to split out the first element for LSTM initialization.
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
(y, carry), st_lstm = s.lstm_cell(x_init, ps.lstm_cell, st.lstm_cell)
# Now that we have the hidden state and memory in `carry` we will pass the input and
# `carry` jointly
for x in x_rest
(y, carry), st_lstm = s.lstm_cell((x, carry), ps.lstm_cell, st_lstm)
end
# After running through the sequence we will pass the output through the classifier
y, st_classifier = s.classifier(y, ps.classifier, st.classifier)
# Finally remember to create the updated state
st = merge(st, (classifier=st_classifier, lstm_cell=st_lstm))
return vec(y), st
end
Using the @compact
API
We can also define the model using the Lux.@compact
API, which is a more concise way of defining models. This macro automatically handles the boilerplate code for you and as such we recommend this way of defining custom layers
function SpiralClassifierCompact(in_dims, hidden_dims, out_dims)
lstm_cell = LSTMCell(in_dims => hidden_dims)
classifier = Dense(hidden_dims => out_dims, sigmoid)
return @compact(; lstm_cell, classifier) do x::AbstractArray{T,3} where {T}
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
y, carry = lstm_cell(x_init)
for x in x_rest
y, carry = lstm_cell((x, carry))
end
@return vec(classifier(y))
end
end
Defining Accuracy, Loss and Optimiser
Now let's define the binary cross-entropy loss. Typically it is recommended to use logitbinarycrossentropy
since it is more numerically stable, but for the sake of simplicity we will use binarycrossentropy
.
const lossfn = BinaryCrossEntropyLoss()
function compute_loss(model, ps, st, (x, y))
ŷ, st_ = model(x, ps, st)
loss = lossfn(ŷ, y)
return loss, st_, (; y_pred=ŷ)
end
matches(y_pred, y_true) = sum((y_pred .> 0.5f0) .== y_true)
accuracy(y_pred, y_true) = matches(y_pred, y_true) / length(y_pred)
Training the Model
function main(model_type)
dev = reactant_device()
cdev = cpu_device()
# Get the dataloaders
train_loader, val_loader = dev(get_dataloaders())
# Create the model
model = model_type(2, 8, 1)
ps, st = dev(Lux.setup(Random.default_rng(), model))
train_state = Training.TrainState(model, ps, st, Adam(0.01f0))
model_compiled = if dev isa ReactantDevice
Reactant.with_config(;
dot_general_precision=PrecisionConfig.HIGH,
convolution_precision=PrecisionConfig.HIGH,
) do
@compile model(first(train_loader)[1], ps, Lux.testmode(st))
end
else
model
end
ad = dev isa ReactantDevice ? AutoEnzyme() : AutoZygote()
for epoch in 1:25
# Train the model
total_loss = 0.0f0
total_samples = 0
for (x, y) in train_loader
(_, loss, _, train_state) = Training.single_train_step!(
ad, lossfn, (x, y), train_state
)
total_loss += loss * length(y)
total_samples += length(y)
end
@printf("Epoch [%3d]: Loss %4.5f\n", epoch, total_loss / total_samples)
# Validate the model
total_acc = 0.0f0
total_loss = 0.0f0
total_samples = 0
st_ = Lux.testmode(train_state.states)
for (x, y) in val_loader
ŷ, st_ = model_compiled(x, train_state.parameters, st_)
ŷ, y = cdev(ŷ), cdev(y)
total_acc += accuracy(ŷ, y) * length(y)
total_loss += lossfn(ŷ, y) * length(y)
total_samples += length(y)
end
@printf(
"Validation:\tLoss %4.5f\tAccuracy %4.5f\n",
total_loss / total_samples,
total_acc / total_samples
)
end
return cpu_device()((train_state.parameters, train_state.states))
end
ps_trained, st_trained = main(SpiralClassifier)
┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore /var/lib/buildkite-agent/builds/gpuci-15/julialang/lux-dot-jl/lib/LuxCore/src/LuxCore.jl:18
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1758301112.445723 1172032 service.cc:158] XLA service 0xb3d7860 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
I0000 00:00:1758301112.445820 1172032 service.cc:166] StreamExecutor device (0): Quadro RTX 5000, Compute Capability 7.5
I0000 00:00:1758301112.446669 1172032 se_gpu_pjrt_client.cc:1338] Using BFC allocator.
I0000 00:00:1758301112.446735 1172032 gpu_helpers.cc:136] XLA backend allocating 12526534656 bytes on device 0 for BFCAllocator.
I0000 00:00:1758301112.446787 1172032 gpu_helpers.cc:177] XLA backend will use up to 4175511552 bytes on device 0 for CollectiveBFCAllocator.
I0000 00:00:1758301112.456036 1172032 cuda_dnn.cc:463] Loaded cuDNN version 91200
Epoch [ 1]: Loss 0.68730
Validation: Loss 0.62905 Accuracy 0.56250
Epoch [ 2]: Loss 0.60175
Validation: Loss 0.54224 Accuracy 1.00000
Epoch [ 3]: Loss 0.51158
Validation: Loss 0.44042 Accuracy 1.00000
Epoch [ 4]: Loss 0.40892
Validation: Loss 0.33205 Accuracy 1.00000
Epoch [ 5]: Loss 0.30078
Validation: Loss 0.24234 Accuracy 1.00000
Epoch [ 6]: Loss 0.22024
Validation: Loss 0.17760 Accuracy 1.00000
Epoch [ 7]: Loss 0.16320
Validation: Loss 0.13305 Accuracy 1.00000
Epoch [ 8]: Loss 0.12186
Validation: Loss 0.09922 Accuracy 1.00000
Epoch [ 9]: Loss 0.08955
Validation: Loss 0.07283 Accuracy 1.00000
Epoch [ 10]: Loss 0.06477
Validation: Loss 0.05212 Accuracy 1.00000
Epoch [ 11]: Loss 0.04706
Validation: Loss 0.03981 Accuracy 1.00000
Epoch [ 12]: Loss 0.03655
Validation: Loss 0.03179 Accuracy 1.00000
Epoch [ 13]: Loss 0.02966
Validation: Loss 0.02639 Accuracy 1.00000
Epoch [ 14]: Loss 0.02493
Validation: Loss 0.02248 Accuracy 1.00000
Epoch [ 15]: Loss 0.02131
Validation: Loss 0.01929 Accuracy 1.00000
Epoch [ 16]: Loss 0.01845
Validation: Loss 0.01676 Accuracy 1.00000
Epoch [ 17]: Loss 0.01612
Validation: Loss 0.01478 Accuracy 1.00000
Epoch [ 18]: Loss 0.01430
Validation: Loss 0.01310 Accuracy 1.00000
Epoch [ 19]: Loss 0.01274
Validation: Loss 0.01167 Accuracy 1.00000
Epoch [ 20]: Loss 0.01142
Validation: Loss 0.01041 Accuracy 1.00000
Epoch [ 21]: Loss 0.01018
Validation: Loss 0.00929 Accuracy 1.00000
Epoch [ 22]: Loss 0.00917
Validation: Loss 0.00829 Accuracy 1.00000
Epoch [ 23]: Loss 0.00820
Validation: Loss 0.00745 Accuracy 1.00000
Epoch [ 24]: Loss 0.00743
Validation: Loss 0.00677 Accuracy 1.00000
Epoch [ 25]: Loss 0.00680
Validation: Loss 0.00624 Accuracy 1.00000
We can also train the compact model with the exact same code!
ps_trained2, st_trained2 = main(SpiralClassifierCompact)
┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore /var/lib/buildkite-agent/builds/gpuci-15/julialang/lux-dot-jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [ 1]: Loss 0.65773
Validation: Loss 0.59896 Accuracy 0.48438
Epoch [ 2]: Loss 0.54844
Validation: Loss 0.50481 Accuracy 0.48438
Epoch [ 3]: Loss 0.46562
Validation: Loss 0.44668 Accuracy 0.48438
Epoch [ 4]: Loss 0.41867
Validation: Loss 0.40673 Accuracy 0.48438
Epoch [ 5]: Loss 0.38028
Validation: Loss 0.37494 Accuracy 1.00000
Epoch [ 6]: Loss 0.34868
Validation: Loss 0.34632 Accuracy 1.00000
Epoch [ 7]: Loss 0.32582
Validation: Loss 0.31730 Accuracy 1.00000
Epoch [ 8]: Loss 0.29679
Validation: Loss 0.28482 Accuracy 1.00000
Epoch [ 9]: Loss 0.26280
Validation: Loss 0.24613 Accuracy 1.00000
Epoch [ 10]: Loss 0.22103
Validation: Loss 0.20139 Accuracy 1.00000
Epoch [ 11]: Loss 0.17753
Validation: Loss 0.15859 Accuracy 1.00000
Epoch [ 12]: Loss 0.13786
Validation: Loss 0.12561 Accuracy 1.00000
Epoch [ 13]: Loss 0.11194
Validation: Loss 0.10407 Accuracy 1.00000
Epoch [ 14]: Loss 0.09491
Validation: Loss 0.08956 Accuracy 1.00000
Epoch [ 15]: Loss 0.08239
Validation: Loss 0.07924 Accuracy 1.00000
Epoch [ 16]: Loss 0.07345
Validation: Loss 0.07117 Accuracy 1.00000
Epoch [ 17]: Loss 0.06716
Validation: Loss 0.06446 Accuracy 1.00000
Epoch [ 18]: Loss 0.06039
Validation: Loss 0.05869 Accuracy 1.00000
Epoch [ 19]: Loss 0.05467
Validation: Loss 0.05356 Accuracy 1.00000
Epoch [ 20]: Loss 0.05022
Validation: Loss 0.04879 Accuracy 1.00000
Epoch [ 21]: Loss 0.04581
Validation: Loss 0.04416 Accuracy 1.00000
Epoch [ 22]: Loss 0.04077
Validation: Loss 0.03933 Accuracy 1.00000
Epoch [ 23]: Loss 0.03632
Validation: Loss 0.03393 Accuracy 1.00000
Epoch [ 24]: Loss 0.03056
Validation: Loss 0.02759 Accuracy 1.00000
Epoch [ 25]: Loss 0.02393
Validation: Loss 0.02099 Accuracy 1.00000
Saving the Model
We can save the model using JLD2 (and any other serialization library of your choice) Note that we transfer the model to CPU before saving. Additionally, we recommend that you don't save the model struct and only save the parameters and states.
@save "trained_model.jld2" ps_trained st_trained
Let's try loading the model
@load "trained_model.jld2" ps_trained st_trained
2-element Vector{Symbol}:
:ps_trained
:st_trained
Appendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(MLDataDevices)
if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
println()
AMDGPU.versioninfo()
end
end
Julia Version 1.11.7
Commit f2b3dbda30a (2025-09-08 12:10 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 48 × AMD EPYC 7402 24-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver2)
Threads: 48 default, 0 interactive, 24 GC (on 2 virtual cores)
Environment:
JULIA_CPU_THREADS = 2
JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
JULIA_PKG_SERVER =
JULIA_NUM_THREADS = 48
JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0
JULIA_DEBUG = Literate
This page was generated using Literate.jl.