Skip to content

Training a Simple LSTM

In this tutorial we will go over using a recurrent neural network to classify clockwise and anticlockwise spirals. By the end of this tutorial you will be able to:

  1. Create custom Lux models.

  2. Become familiar with the Lux recurrent neural network API.

  3. Training using Optimisers.jl and Zygote.jl.

Package Imports

Note: If you wish to use AutoZygote() for automatic differentiation, add Zygote to your project dependencies and include using Zygote.

julia
using ADTypes, Lux, JLD2, MLUtils, Optimisers, Printf, Reactant, Random

Dataset

We will use MLUtils to generate 500 (noisy) clockwise and 500 (noisy) anticlockwise spirals. Using this data we will create a MLUtils.DataLoader. Our dataloader will give us sequences of size 2 × seq_len × batch_size and we need to predict a binary value whether the sequence is clockwise or anticlockwise.

julia
function create_dataset(; dataset_size=1000, sequence_length=50)
    # Create the spirals
    data = [MLUtils.Datasets.make_spiral(sequence_length) for _ in 1:dataset_size]
    # Get the labels
    labels = vcat(repeat([0.0f0], dataset_size ÷ 2), repeat([1.0f0], dataset_size ÷ 2))
    clockwise_spirals = [
        reshape(d[1][:, 1:sequence_length], :, sequence_length, 1) for
        d in data[1:(dataset_size ÷ 2)]
    ]
    anticlockwise_spirals = [
        reshape(d[1][:, (sequence_length + 1):end], :, sequence_length, 1) for
        d in data[((dataset_size ÷ 2) + 1):end]
    ]
    x_data = Float32.(cat(clockwise_spirals..., anticlockwise_spirals...; dims=3))
    return x_data, labels
end

function get_dataloaders(; dataset_size=1000, sequence_length=50)
    x_data, labels = create_dataset(; dataset_size, sequence_length)
    # Split the dataset
    (x_train, y_train), (x_val, y_val) = splitobs((x_data, labels); at=0.8, shuffle=true)
    # Create DataLoaders
    return (
        # Use DataLoader to automatically minibatch and shuffle the data
        DataLoader(
            collect.((x_train, y_train)); batchsize=128, shuffle=true, partial=false
        ),
        # Don't shuffle the validation data
        DataLoader(collect.((x_val, y_val)); batchsize=128, shuffle=false, partial=false),
    )
end

Creating a Classifier

We will be extending the Lux.AbstractLuxContainerLayer type for our custom model since it will contain a LSTM block and a classifier head.

We pass the field names lstm_cell and classifier to the type to ensure that the parameters and states are automatically populated and we don't have to define Lux.initialparameters and Lux.initialstates.

To understand more about container layers, please look at Container Layer.

julia
struct SpiralClassifier{L,C} <: AbstractLuxContainerLayer{(:lstm_cell, :classifier)}
    lstm_cell::L
    classifier::C
end

We won't define the model from scratch but rather use the Lux.LSTMCell and Lux.Dense.

julia
function SpiralClassifier(in_dims, hidden_dims, out_dims)
    return SpiralClassifier(
        LSTMCell(in_dims => hidden_dims), Dense(hidden_dims => out_dims, sigmoid)
    )
end

We can use default Lux blocks – Recurrence(LSTMCell(in_dims => hidden_dims) – instead of defining the following. But let's still do it for the sake of it.

Now we need to define the behavior of the Classifier when it is invoked.

julia
function (s::SpiralClassifier)(
    x::AbstractArray{T,3}, ps::NamedTuple, st::NamedTuple
) where {T}
    # First we will have to run the sequence through the LSTM Cell
    # The first call to LSTM Cell will create the initial hidden state
    # See that the parameters and states are automatically populated into a field called
    # `lstm_cell` We use `eachslice` to get the elements in the sequence without copying,
    # and `Iterators.peel` to split out the first element for LSTM initialization.
    x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
    (y, carry), st_lstm = s.lstm_cell(x_init, ps.lstm_cell, st.lstm_cell)
    # Now that we have the hidden state and memory in `carry` we will pass the input and
    # `carry` jointly
    for x in x_rest
        (y, carry), st_lstm = s.lstm_cell((x, carry), ps.lstm_cell, st_lstm)
    end
    # After running through the sequence we will pass the output through the classifier
    y, st_classifier = s.classifier(y, ps.classifier, st.classifier)
    # Finally remember to create the updated state
    st = merge(st, (classifier=st_classifier, lstm_cell=st_lstm))
    return vec(y), st
end

Using the @compact API

We can also define the model using the Lux.@compact API, which is a more concise way of defining models. This macro automatically handles the boilerplate code for you and as such we recommend this way of defining custom layers

julia
function SpiralClassifierCompact(in_dims, hidden_dims, out_dims)
    lstm_cell = LSTMCell(in_dims => hidden_dims)
    classifier = Dense(hidden_dims => out_dims, sigmoid)
    return @compact(; lstm_cell, classifier) do x::AbstractArray{T,3} where {T}
        x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
        y, carry = lstm_cell(x_init)
        for x in x_rest
            y, carry = lstm_cell((x, carry))
        end
        @return vec(classifier(y))
    end
end

Defining Accuracy, Loss and Optimiser

Now let's define the binary cross-entropy loss. Typically it is recommended to use logitbinarycrossentropy since it is more numerically stable, but for the sake of simplicity we will use binarycrossentropy.

julia
const lossfn = BinaryCrossEntropyLoss()

function compute_loss(model, ps, st, (x, y))
    ŷ, st_ = model(x, ps, st)
    loss = lossfn(ŷ, y)
    return loss, st_, (; y_pred=ŷ)
end

matches(y_pred, y_true) = sum((y_pred .> 0.5f0) .== y_true)
accuracy(y_pred, y_true) = matches(y_pred, y_true) / length(y_pred)

Training the Model

julia
function main(model_type)
    dev = reactant_device()
    cdev = cpu_device()

    # Get the dataloaders
    train_loader, val_loader = dev(get_dataloaders())

    # Create the model
    model = model_type(2, 8, 1)
    ps, st = dev(Lux.setup(Random.default_rng(), model))

    train_state = Training.TrainState(model, ps, st, Adam(0.01f0))
    model_compiled = if dev isa ReactantDevice
        Reactant.with_config(;
            dot_general_precision=PrecisionConfig.HIGH,
            convolution_precision=PrecisionConfig.HIGH,
        ) do
            @compile model(first(train_loader)[1], ps, Lux.testmode(st))
        end
    else
        model
    end
    ad = dev isa ReactantDevice ? AutoEnzyme() : AutoZygote()

    for epoch in 1:25
        # Train the model
        total_loss = 0.0f0
        total_samples = 0
        for (x, y) in train_loader
            (_, loss, _, train_state) = Training.single_train_step!(
                ad, lossfn, (x, y), train_state
            )
            total_loss += loss * length(y)
            total_samples += length(y)
        end
        @printf("Epoch [%3d]: Loss %4.5f\n", epoch, total_loss / total_samples)

        # Validate the model
        total_acc = 0.0f0
        total_loss = 0.0f0
        total_samples = 0

        st_ = Lux.testmode(train_state.states)
        for (x, y) in val_loader
            ŷ, st_ = model_compiled(x, train_state.parameters, st_)
            ŷ, y = cdev(ŷ), cdev(y)
            total_acc += accuracy(ŷ, y) * length(y)
            total_loss += lossfn(ŷ, y) * length(y)
            total_samples += length(y)
        end

        @printf(
            "Validation:\tLoss %4.5f\tAccuracy %4.5f\n",
            total_loss / total_samples,
            total_acc / total_samples
        )
    end

    return cpu_device()((train_state.parameters, train_state.states))
end

ps_trained, st_trained = main(SpiralClassifier)
┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore /var/lib/buildkite-agent/builds/gpuci-7/julialang/lux-dot-jl/lib/LuxCore/src/LuxCore.jl:18
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1760849110.006028   47063 service.cc:158] XLA service 0x22b02e60 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
I0000 00:00:1760849110.006119   47063 service.cc:166]   StreamExecutor device (0): NVIDIA A100-PCIE-40GB MIG 1g.5gb, Compute Capability 8.0
I0000 00:00:1760849110.007082   47063 se_gpu_pjrt_client.cc:1339] Using BFC allocator.
I0000 00:00:1760849110.007136   47063 gpu_helpers.cc:136] XLA backend allocating 3825205248 bytes on device 0 for BFCAllocator.
I0000 00:00:1760849110.007184   47063 gpu_helpers.cc:177] XLA backend will use up to 1275068416 bytes on device 0 for CollectiveBFCAllocator.
I0000 00:00:1760849110.017290   47063 cuda_dnn.cc:463] Loaded cuDNN version 91200
Epoch [  1]: Loss 0.47179
Validation:	Loss 0.43614	Accuracy 1.00000
Epoch [  2]: Loss 0.39690
Validation:	Loss 0.37568	Accuracy 1.00000
Epoch [  3]: Loss 0.34050
Validation:	Loss 0.32116	Accuracy 1.00000
Epoch [  4]: Loss 0.28240
Validation:	Loss 0.25850	Accuracy 1.00000
Epoch [  5]: Loss 0.20313
Validation:	Loss 0.15528	Accuracy 1.00000
Epoch [  6]: Loss 0.12614
Validation:	Loss 0.09985	Accuracy 1.00000
Epoch [  7]: Loss 0.08008
Validation:	Loss 0.06398	Accuracy 1.00000
Epoch [  8]: Loss 0.05445
Validation:	Loss 0.04558	Accuracy 1.00000
Epoch [  9]: Loss 0.04021
Validation:	Loss 0.03493	Accuracy 1.00000
Epoch [ 10]: Loss 0.03141
Validation:	Loss 0.02794	Accuracy 1.00000
Epoch [ 11]: Loss 0.02523
Validation:	Loss 0.02305	Accuracy 1.00000
Epoch [ 12]: Loss 0.02092
Validation:	Loss 0.01953	Accuracy 1.00000
Epoch [ 13]: Loss 0.01772
Validation:	Loss 0.01691	Accuracy 1.00000
Epoch [ 14]: Loss 0.01544
Validation:	Loss 0.01489	Accuracy 1.00000
Epoch [ 15]: Loss 0.01361
Validation:	Loss 0.01330	Accuracy 1.00000
Epoch [ 16]: Loss 0.01214
Validation:	Loss 0.01200	Accuracy 1.00000
Epoch [ 17]: Loss 0.01100
Validation:	Loss 0.01093	Accuracy 1.00000
Epoch [ 18]: Loss 0.01000
Validation:	Loss 0.01002	Accuracy 1.00000
Epoch [ 19]: Loss 0.00917
Validation:	Loss 0.00923	Accuracy 1.00000
Epoch [ 20]: Loss 0.00847
Validation:	Loss 0.00852	Accuracy 1.00000
Epoch [ 21]: Loss 0.00781
Validation:	Loss 0.00787	Accuracy 1.00000
Epoch [ 22]: Loss 0.00721
Validation:	Loss 0.00726	Accuracy 1.00000
Epoch [ 23]: Loss 0.00665
Validation:	Loss 0.00669	Accuracy 1.00000
Epoch [ 24]: Loss 0.00609
Validation:	Loss 0.00612	Accuracy 1.00000
Epoch [ 25]: Loss 0.00556
Validation:	Loss 0.00557	Accuracy 1.00000

We can also train the compact model with the exact same code!

julia
ps_trained2, st_trained2 = main(SpiralClassifierCompact)
┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore /var/lib/buildkite-agent/builds/gpuci-7/julialang/lux-dot-jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [  1]: Loss 0.52675
Validation:	Loss 0.47182	Accuracy 1.00000
Epoch [  2]: Loss 0.43590
Validation:	Loss 0.39032	Accuracy 1.00000
Epoch [  3]: Loss 0.36321
Validation:	Loss 0.32815	Accuracy 1.00000
Epoch [  4]: Loss 0.30617
Validation:	Loss 0.27767	Accuracy 1.00000
Epoch [  5]: Loss 0.25991
Validation:	Loss 0.23700	Accuracy 1.00000
Epoch [  6]: Loss 0.22274
Validation:	Loss 0.20424	Accuracy 1.00000
Epoch [  7]: Loss 0.19228
Validation:	Loss 0.17711	Accuracy 1.00000
Epoch [  8]: Loss 0.16676
Validation:	Loss 0.15352	Accuracy 1.00000
Epoch [  9]: Loss 0.14402
Validation:	Loss 0.13104	Accuracy 1.00000
Epoch [ 10]: Loss 0.12130
Validation:	Loss 0.10753	Accuracy 1.00000
Epoch [ 11]: Loss 0.09791
Validation:	Loss 0.08348	Accuracy 1.00000
Epoch [ 12]: Loss 0.07454
Validation:	Loss 0.06124	Accuracy 1.00000
Epoch [ 13]: Loss 0.05536
Validation:	Loss 0.04669	Accuracy 1.00000
Epoch [ 14]: Loss 0.04338
Validation:	Loss 0.03739	Accuracy 1.00000
Epoch [ 15]: Loss 0.03524
Validation:	Loss 0.03020	Accuracy 1.00000
Epoch [ 16]: Loss 0.02843
Validation:	Loss 0.02402	Accuracy 1.00000
Epoch [ 17]: Loss 0.02253
Validation:	Loss 0.01897	Accuracy 1.00000
Epoch [ 18]: Loss 0.01780
Validation:	Loss 0.01548	Accuracy 1.00000
Epoch [ 19]: Loss 0.01474
Validation:	Loss 0.01321	Accuracy 1.00000
Epoch [ 20]: Loss 0.01272
Validation:	Loss 0.01165	Accuracy 1.00000
Epoch [ 21]: Loss 0.01138
Validation:	Loss 0.01049	Accuracy 1.00000
Epoch [ 22]: Loss 0.01032
Validation:	Loss 0.00958	Accuracy 1.00000
Epoch [ 23]: Loss 0.00940
Validation:	Loss 0.00884	Accuracy 1.00000
Epoch [ 24]: Loss 0.00875
Validation:	Loss 0.00821	Accuracy 1.00000
Epoch [ 25]: Loss 0.00814
Validation:	Loss 0.00767	Accuracy 1.00000

Saving the Model

We can save the model using JLD2 (and any other serialization library of your choice) Note that we transfer the model to CPU before saving. Additionally, we recommend that you don't save the model struct and only save the parameters and states.

julia
@save "trained_model.jld2" ps_trained st_trained

Let's try loading the model

julia
@load "trained_model.jld2" ps_trained st_trained
2-element Vector{Symbol}:
 :ps_trained
 :st_trained

Appendix

julia
using InteractiveUtils
InteractiveUtils.versioninfo()

if @isdefined(MLDataDevices)
    if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
        println()
        CUDA.versioninfo()
    end

    if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
        println()
        AMDGPU.versioninfo()
    end
end
Julia Version 1.11.7
Commit f2b3dbda30a (2025-09-08 12:10 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 48 × AMD EPYC 7402 24-Core Processor
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver2)
Threads: 48 default, 0 interactive, 24 GC (on 2 virtual cores)
Environment:
  JULIA_CPU_THREADS = 2
  JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
  LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
  JULIA_PKG_SERVER = 
  JULIA_NUM_THREADS = 48
  JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
  JULIA_PKG_PRECOMPILE_AUTO = 0
  JULIA_DEBUG = Literate

This page was generated using Literate.jl.