Training a Simple LSTM
In this tutorial we will go over using a recurrent neural network to classify clockwise and anticlockwise spirals. By the end of this tutorial you will be able to:
Create custom Lux models.
Become familiar with the Lux recurrent neural network API.
Training using Optimisers.jl and Zygote.jl.
Package Imports
Note: If you wish to use AutoZygote() for automatic differentiation, add Zygote to your project dependencies and include using Zygote.
using ADTypes, Lux, JLD2, MLUtils, Optimisers, Printf, Reactant, RandomDataset
We will use MLUtils to generate 500 (noisy) clockwise and 500 (noisy) anticlockwise spirals. Using this data we will create a MLUtils.DataLoader. Our dataloader will give us sequences of size 2 × seq_len × batch_size and we need to predict a binary value whether the sequence is clockwise or anticlockwise.
function create_dataset(; dataset_size=1000, sequence_length=50)
# Create the spirals
data = [MLUtils.Datasets.make_spiral(sequence_length) for _ in 1:dataset_size]
# Get the labels
labels = vcat(repeat([0.0f0], dataset_size ÷ 2), repeat([1.0f0], dataset_size ÷ 2))
clockwise_spirals = [
reshape(d[1][:, 1:sequence_length], :, sequence_length, 1) for
d in data[1:(dataset_size ÷ 2)]
]
anticlockwise_spirals = [
reshape(d[1][:, (sequence_length + 1):end], :, sequence_length, 1) for
d in data[((dataset_size ÷ 2) + 1):end]
]
x_data = Float32.(cat(clockwise_spirals..., anticlockwise_spirals...; dims=3))
return x_data, labels
end
function get_dataloaders(; dataset_size=1000, sequence_length=50)
x_data, labels = create_dataset(; dataset_size, sequence_length)
# Split the dataset
(x_train, y_train), (x_val, y_val) = splitobs((x_data, labels); at=0.8, shuffle=true)
# Create DataLoaders
return (
# Use DataLoader to automatically minibatch and shuffle the data
DataLoader(
collect.((x_train, y_train)); batchsize=128, shuffle=true, partial=false
),
# Don't shuffle the validation data
DataLoader(collect.((x_val, y_val)); batchsize=128, shuffle=false, partial=false),
)
endCreating a Classifier
We will be extending the Lux.AbstractLuxContainerLayer type for our custom model since it will contain a LSTM block and a classifier head.
We pass the field names lstm_cell and classifier to the type to ensure that the parameters and states are automatically populated and we don't have to define Lux.initialparameters and Lux.initialstates.
To understand more about container layers, please look at Container Layer.
struct SpiralClassifier{L,C} <: AbstractLuxContainerLayer{(:lstm_cell, :classifier)}
lstm_cell::L
classifier::C
endWe won't define the model from scratch but rather use the Lux.LSTMCell and Lux.Dense.
function SpiralClassifier(in_dims, hidden_dims, out_dims)
return SpiralClassifier(
LSTMCell(in_dims => hidden_dims), Dense(hidden_dims => out_dims, sigmoid)
)
endWe can use default Lux blocks – Recurrence(LSTMCell(in_dims => hidden_dims) – instead of defining the following. But let's still do it for the sake of it.
Now we need to define the behavior of the Classifier when it is invoked.
function (s::SpiralClassifier)(
x::AbstractArray{T,3}, ps::NamedTuple, st::NamedTuple
) where {T}
# First we will have to run the sequence through the LSTM Cell
# The first call to LSTM Cell will create the initial hidden state
# See that the parameters and states are automatically populated into a field called
# `lstm_cell` We use `eachslice` to get the elements in the sequence without copying,
# and `Iterators.peel` to split out the first element for LSTM initialization.
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
(y, carry), st_lstm = s.lstm_cell(x_init, ps.lstm_cell, st.lstm_cell)
# Now that we have the hidden state and memory in `carry` we will pass the input and
# `carry` jointly
for x in x_rest
(y, carry), st_lstm = s.lstm_cell((x, carry), ps.lstm_cell, st_lstm)
end
# After running through the sequence we will pass the output through the classifier
y, st_classifier = s.classifier(y, ps.classifier, st.classifier)
# Finally remember to create the updated state
st = merge(st, (classifier=st_classifier, lstm_cell=st_lstm))
return vec(y), st
endUsing the @compact API
We can also define the model using the Lux.@compact API, which is a more concise way of defining models. This macro automatically handles the boilerplate code for you and as such we recommend this way of defining custom layers
function SpiralClassifierCompact(in_dims, hidden_dims, out_dims)
lstm_cell = LSTMCell(in_dims => hidden_dims)
classifier = Dense(hidden_dims => out_dims, sigmoid)
return @compact(; lstm_cell, classifier) do x::AbstractArray{T,3} where {T}
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
y, carry = lstm_cell(x_init)
for x in x_rest
y, carry = lstm_cell((x, carry))
end
@return vec(classifier(y))
end
endDefining Accuracy, Loss and Optimiser
Now let's define the binary cross-entropy loss. Typically it is recommended to use logitbinarycrossentropy since it is more numerically stable, but for the sake of simplicity we will use binarycrossentropy.
const lossfn = BinaryCrossEntropyLoss()
function compute_loss(model, ps, st, (x, y))
ŷ, st_ = model(x, ps, st)
loss = lossfn(ŷ, y)
return loss, st_, (; y_pred=ŷ)
end
matches(y_pred, y_true) = sum((y_pred .> 0.5f0) .== y_true)
accuracy(y_pred, y_true) = matches(y_pred, y_true) / length(y_pred)Training the Model
function main(model_type)
dev = reactant_device()
cdev = cpu_device()
# Get the dataloaders
train_loader, val_loader = dev(get_dataloaders())
# Create the model
model = model_type(2, 8, 1)
ps, st = dev(Lux.setup(Random.default_rng(), model))
train_state = Training.TrainState(model, ps, st, Adam(0.01f0))
model_compiled = if dev isa ReactantDevice
Reactant.with_config(;
dot_general_precision=PrecisionConfig.HIGH,
convolution_precision=PrecisionConfig.HIGH,
) do
@compile model(first(train_loader)[1], ps, Lux.testmode(st))
end
else
model
end
ad = dev isa ReactantDevice ? AutoEnzyme() : AutoZygote()
for epoch in 1:25
# Train the model
total_loss = 0.0f0
total_samples = 0
for (x, y) in train_loader
(_, loss, _, train_state) = Training.single_train_step!(
ad, lossfn, (x, y), train_state
)
total_loss += loss * length(y)
total_samples += length(y)
end
@printf("Epoch [%3d]: Loss %4.5f\n", epoch, total_loss / total_samples)
# Validate the model
total_acc = 0.0f0
total_loss = 0.0f0
total_samples = 0
st_ = Lux.testmode(train_state.states)
for (x, y) in val_loader
ŷ, st_ = model_compiled(x, train_state.parameters, st_)
ŷ, y = cdev(ŷ), cdev(y)
total_acc += accuracy(ŷ, y) * length(y)
total_loss += lossfn(ŷ, y) * length(y)
total_samples += length(y)
end
@printf(
"Validation:\tLoss %4.5f\tAccuracy %4.5f\n",
total_loss / total_samples,
total_acc / total_samples
)
end
return cpu_device()((train_state.parameters, train_state.states))
end
ps_trained, st_trained = main(SpiralClassifier)┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore /var/lib/buildkite-agent/builds/gpuci-7/julialang/lux-dot-jl/lib/LuxCore/src/LuxCore.jl:18
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1760849110.006028 47063 service.cc:158] XLA service 0x22b02e60 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
I0000 00:00:1760849110.006119 47063 service.cc:166] StreamExecutor device (0): NVIDIA A100-PCIE-40GB MIG 1g.5gb, Compute Capability 8.0
I0000 00:00:1760849110.007082 47063 se_gpu_pjrt_client.cc:1339] Using BFC allocator.
I0000 00:00:1760849110.007136 47063 gpu_helpers.cc:136] XLA backend allocating 3825205248 bytes on device 0 for BFCAllocator.
I0000 00:00:1760849110.007184 47063 gpu_helpers.cc:177] XLA backend will use up to 1275068416 bytes on device 0 for CollectiveBFCAllocator.
I0000 00:00:1760849110.017290 47063 cuda_dnn.cc:463] Loaded cuDNN version 91200
Epoch [ 1]: Loss 0.47179
Validation: Loss 0.43614 Accuracy 1.00000
Epoch [ 2]: Loss 0.39690
Validation: Loss 0.37568 Accuracy 1.00000
Epoch [ 3]: Loss 0.34050
Validation: Loss 0.32116 Accuracy 1.00000
Epoch [ 4]: Loss 0.28240
Validation: Loss 0.25850 Accuracy 1.00000
Epoch [ 5]: Loss 0.20313
Validation: Loss 0.15528 Accuracy 1.00000
Epoch [ 6]: Loss 0.12614
Validation: Loss 0.09985 Accuracy 1.00000
Epoch [ 7]: Loss 0.08008
Validation: Loss 0.06398 Accuracy 1.00000
Epoch [ 8]: Loss 0.05445
Validation: Loss 0.04558 Accuracy 1.00000
Epoch [ 9]: Loss 0.04021
Validation: Loss 0.03493 Accuracy 1.00000
Epoch [ 10]: Loss 0.03141
Validation: Loss 0.02794 Accuracy 1.00000
Epoch [ 11]: Loss 0.02523
Validation: Loss 0.02305 Accuracy 1.00000
Epoch [ 12]: Loss 0.02092
Validation: Loss 0.01953 Accuracy 1.00000
Epoch [ 13]: Loss 0.01772
Validation: Loss 0.01691 Accuracy 1.00000
Epoch [ 14]: Loss 0.01544
Validation: Loss 0.01489 Accuracy 1.00000
Epoch [ 15]: Loss 0.01361
Validation: Loss 0.01330 Accuracy 1.00000
Epoch [ 16]: Loss 0.01214
Validation: Loss 0.01200 Accuracy 1.00000
Epoch [ 17]: Loss 0.01100
Validation: Loss 0.01093 Accuracy 1.00000
Epoch [ 18]: Loss 0.01000
Validation: Loss 0.01002 Accuracy 1.00000
Epoch [ 19]: Loss 0.00917
Validation: Loss 0.00923 Accuracy 1.00000
Epoch [ 20]: Loss 0.00847
Validation: Loss 0.00852 Accuracy 1.00000
Epoch [ 21]: Loss 0.00781
Validation: Loss 0.00787 Accuracy 1.00000
Epoch [ 22]: Loss 0.00721
Validation: Loss 0.00726 Accuracy 1.00000
Epoch [ 23]: Loss 0.00665
Validation: Loss 0.00669 Accuracy 1.00000
Epoch [ 24]: Loss 0.00609
Validation: Loss 0.00612 Accuracy 1.00000
Epoch [ 25]: Loss 0.00556
Validation: Loss 0.00557 Accuracy 1.00000We can also train the compact model with the exact same code!
ps_trained2, st_trained2 = main(SpiralClassifierCompact)┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore /var/lib/buildkite-agent/builds/gpuci-7/julialang/lux-dot-jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [ 1]: Loss 0.52675
Validation: Loss 0.47182 Accuracy 1.00000
Epoch [ 2]: Loss 0.43590
Validation: Loss 0.39032 Accuracy 1.00000
Epoch [ 3]: Loss 0.36321
Validation: Loss 0.32815 Accuracy 1.00000
Epoch [ 4]: Loss 0.30617
Validation: Loss 0.27767 Accuracy 1.00000
Epoch [ 5]: Loss 0.25991
Validation: Loss 0.23700 Accuracy 1.00000
Epoch [ 6]: Loss 0.22274
Validation: Loss 0.20424 Accuracy 1.00000
Epoch [ 7]: Loss 0.19228
Validation: Loss 0.17711 Accuracy 1.00000
Epoch [ 8]: Loss 0.16676
Validation: Loss 0.15352 Accuracy 1.00000
Epoch [ 9]: Loss 0.14402
Validation: Loss 0.13104 Accuracy 1.00000
Epoch [ 10]: Loss 0.12130
Validation: Loss 0.10753 Accuracy 1.00000
Epoch [ 11]: Loss 0.09791
Validation: Loss 0.08348 Accuracy 1.00000
Epoch [ 12]: Loss 0.07454
Validation: Loss 0.06124 Accuracy 1.00000
Epoch [ 13]: Loss 0.05536
Validation: Loss 0.04669 Accuracy 1.00000
Epoch [ 14]: Loss 0.04338
Validation: Loss 0.03739 Accuracy 1.00000
Epoch [ 15]: Loss 0.03524
Validation: Loss 0.03020 Accuracy 1.00000
Epoch [ 16]: Loss 0.02843
Validation: Loss 0.02402 Accuracy 1.00000
Epoch [ 17]: Loss 0.02253
Validation: Loss 0.01897 Accuracy 1.00000
Epoch [ 18]: Loss 0.01780
Validation: Loss 0.01548 Accuracy 1.00000
Epoch [ 19]: Loss 0.01474
Validation: Loss 0.01321 Accuracy 1.00000
Epoch [ 20]: Loss 0.01272
Validation: Loss 0.01165 Accuracy 1.00000
Epoch [ 21]: Loss 0.01138
Validation: Loss 0.01049 Accuracy 1.00000
Epoch [ 22]: Loss 0.01032
Validation: Loss 0.00958 Accuracy 1.00000
Epoch [ 23]: Loss 0.00940
Validation: Loss 0.00884 Accuracy 1.00000
Epoch [ 24]: Loss 0.00875
Validation: Loss 0.00821 Accuracy 1.00000
Epoch [ 25]: Loss 0.00814
Validation: Loss 0.00767 Accuracy 1.00000Saving the Model
We can save the model using JLD2 (and any other serialization library of your choice) Note that we transfer the model to CPU before saving. Additionally, we recommend that you don't save the model struct and only save the parameters and states.
@save "trained_model.jld2" ps_trained st_trainedLet's try loading the model
@load "trained_model.jld2" ps_trained st_trained2-element Vector{Symbol}:
:ps_trained
:st_trainedAppendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(MLDataDevices)
if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
println()
AMDGPU.versioninfo()
end
endJulia Version 1.11.7
Commit f2b3dbda30a (2025-09-08 12:10 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 48 × AMD EPYC 7402 24-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver2)
Threads: 48 default, 0 interactive, 24 GC (on 2 virtual cores)
Environment:
JULIA_CPU_THREADS = 2
JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
JULIA_PKG_SERVER =
JULIA_NUM_THREADS = 48
JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0
JULIA_DEBUG = LiterateThis page was generated using Literate.jl.