Freezing Model Parameters
Warning
API for freezing parameters should be considered experimental at this point.
In this manual entry, we will go over how to freeze certain parameters in a model.
Freezing Layers of a Particular Kind
To freeze a particular kind of layer, let's say Dense in the following example. We can use Lux.Experimental.layer_map and freeze layers if they are of type Dense.
julia
using Lux, Random, Functors
rng = Xoshiro(0)
model = Chain(Dense(3, 4), Chain(Dense(4, 4), Dropout(0.5f0), BatchNorm(4)), Dense(4, 1))
ps, st = Lux.setup(rng, model)
x = randn(rng, Float32, 3, 2)
model(x, ps, st)
function freeze_dense(d::Lux.Dense, ps, st, path)
return Lux.Experimental.freeze(d, ps, st, (:weight, :bias))
end
freeze_dense(l, ps, st, path) = (l, ps, st)
model_frozen, ps_frozen, st_frozen = Lux.Experimental.layer_map(freeze_dense, model, ps, st)
model_frozen(x, ps_frozen, st_frozen)(Float32[0.6886741 -1.2361472], (layer_1 = (frozen_params = (weight = Float32[-0.028461456 -0.5999714 -0.3850993; -0.18860114 0.72428167 0.32322538; -0.965117 -0.4585489 -0.32623518; -0.86290836 -0.82805836 -0.7673453], bias = Float32[0.4216236, -0.4510427, -0.097253, 0.23325463]), states = NamedTuple()), layer_2 = (layer_1 = (frozen_params = (weight = Float32[-0.680748 0.1764085 0.34383082 0.6469914; -0.13819042 -0.109261915 -0.6143286 -0.21672015; -0.20881107 0.70390546 0.48137343 0.25662464; 0.38187847 0.05779423 -0.35181466 -0.096988946], bias = Float32[0.41246277, 0.4318977, -0.4305781, 0.3367505]), states = NamedTuple()), layer_2 = (rng = Random.Xoshiro(0x4fa3403dd074e603, 0x12c522b8034ae186, 0x8e0c3a65079041bb, 0x21617f7747d97206, 0x22a21880af5dc689), training = Val{true}()), layer_3 = (running_mean = Float32[0.01965834, 0.0, 0.0, 0.015937408], running_var = Float32[0.90772897, 0.9, 0.9, 0.90508], training = Val{true}())), layer_3 = (frozen_params = (weight = Float32[0.7794657 0.8337032 0.6323408 -0.18308182], bias = Float32[-0.27373654]), states = NamedTuple())))Freezing by Layer Name
When the function in layer_map is called, the 4th argument is the name of the layer. For example, if you want to freeze the 1st layer inside the inner Chain. The name for this would be layer_2.layer_1.
julia
function freeze_by_name(d, ps, st, name::KeyPath)
name == KeyPath(:layer_2, :layer_1) &&
return Lux.Experimental.freeze(d, ps, st, (:weight, :bias))
return d, ps, st
endjulia
function freeze_dense(d::Dense, ps, st, _)
return Lux.Experimental.freeze(d, ps, st, (:weight, :bias))
end
freeze_dense(l, ps, st, _) = (l, ps, st)Freezing Part of the Parameters
Instead of freezing all the parameters, we can simply specify (:weight,) to freeze only the weight parameter while training the bias parameter.
julia
function freeze_by_name(d, ps, st, name::KeyPath)
name == KeyPath(:layer_2, :layer_1) &&
return Lux.Experimental.freeze(d, ps, st, (:weight,))
return d, ps, st
endjulia
function freeze_by_name(d, ps, st, name::KeyPath)
name == KeyPath(:layer_2, :layer_1) &&
return Lux.Experimental.freeze(d, ps, st, (:weight, :bias))
return d, ps, st
endFreezing Part of a Chain
julia
using Lux, Random
rng = Random.default_rng()
Random.seed!(rng, 0)
model = Chain(Dense(3, 4), Dense(4, 4), Dropout(0.5f0), BatchNorm(4), Dense(4, 1))
model_frozen = Chain(model[1:2], Lux.Experimental.freeze(model[3:4]), model[5])
ps, st = Lux.setup(rng, model_frozen)
x = randn(rng, Float32, 3, 2)
model_frozen(x, ps, st)(Float32[0.7429947 -1.2904677], (layer_1 = (layer_1 = NamedTuple(), layer_2 = NamedTuple()), layer_2 = (frozen_params = (layer_3 = NamedTuple(), layer_4 = (scale = Float32[1.0, 1.0, 1.0, 1.0], bias = Float32[0.0, 0.0, 0.0, 0.0])), states = (layer_3 = (rng = Random.TaskLocalRNG(), training = Val{true}()), layer_4 = (running_mean = Float32[0.0, 0.048522998, 0.0, 0.015937408], running_var = Float32[0.9, 0.9470896, 0.9, 0.90508], training = Val{true}()))), layer_3 = NamedTuple()))