Skip to content

Experimental Features

All features listed on this page are experimental which means:

  1. No SemVer Guarantees. We use code here to iterate fast. That said, historically we have never broken any code in this module and have always provided a deprecation period.

  2. Expect edge-cases and report them. It will help us move these features out of experimental sooner.

  3. None of the features are exported.

Index

Parameter Freezing

# Lux.Experimental.FrozenLayerType.
julia
FrozenLayer(l::AbstractLuxLayer, which_params::Optional{Tuple})

Freeze the parameters with name which_params of the layer l.

Use Lux.Experimental.freeze instead

It is always recommended to use the Lux.Experimental.freeze function instead of directly using the FrozenLayer constructor.

No checks for which_params

There are no checks for which_params. For example, if the original layer has parameters named (:weight, :bias), and which_params is set to (:myweight,) then none of the parameters are frozen and no error is thrown.

Arguments

  • l: Lux AbstractLuxLayer.

  • which_params: Parameter Names to be Frozen. Can be set to nothing, in which case all parameters are frozen.

Extended Help

Parameters

  • Parameters of the layer l excluding which_params.

States

  • frozen_params: Parameters that are frozen, i.e., which_params.

  • states: The state of the inner layer l.

Note on Internal Layer Implementation

The inner layer should work with NamedTuple parameters. In order to support custom parameter types, users need to implement Lux.Utils.merge(::CustomParamType, ::NamedTuple) or extend Lux.Utils.named_tuple(::CustomParamType) to return a NamedTuple.

Example

julia
julia> Lux.Experimental.FrozenLayer(Dense(2 => 2), (:weight,))
FrozenLayer(Dense(2 => 2), (:weight,))  # 2 parameters, plus 4 non-trainable

See also Lux.Experimental.freeze, Lux.Experimental.unfreeze.

source


# Lux.Experimental.freezeFunction.
julia
freeze(l::AbstractLuxLayer, which_params::Optional{Tuple} = nothing)

Constructs a version of l with which_params frozen. If which_params is nothing, then all parameters are frozen.

source

julia
freeze(l::AbstractLuxLayer, ps, st::NamedTuple,
    which_params::Optional{Tuple} = nothing)

Construct a Lux.Experimental.FrozenLayer for l with the current parameters and states. If which_params is nothing, then all parameters are frozen.

source


# Lux.Experimental.unfreezeFunction.
julia
unfreeze(l::FrozenLayer)

Unfreezes the layer l.

source

julia
unfreeze(l::FrozenLayer, ps, st::NamedTuple)

Unwraps a Lux.Experimental.FrozenLayer l with the current parameters and states.

source


For detailed usage example look at the manual page.

Map over Layer

# Lux.Experimental.layer_mapFunction.
julia
layer_map(f, l::AbstractLuxLayer, ps, st::NamedTuple)

Map the function f over the model l, with the parameters ps and states st. This is different from Functors.fmap since it zips the layers, parameters, and states and invokes the function on all of them together.

KeyPath provided to the function

The KeyPath depths on the structure of the parameters and states. This is of consequence exclusively for AbstractLuxWrapperLayer where the structure of the layer doesn't match the structure of the parameters and states. In the example, provided below, the KeyPath is (:chain, :dense_1) for the first layer (following the structure in ps) while accessing the same layer in the chain is done with ( :chain, :layers, :dense_1).

Call Signature for f

  • Must take 4 inputs – AbstractLuxLayer, Corresponding Parameters, Corresponding States, and the Functors.KeyPath to the layer.

  • Must return a tuple of 3 elements – AbstractLuxLayer, new parameters and the new states.

Extended Help

Example

julia
julia> using Lux, Random

julia> c = Parallel(
           +; chain=Chain(; dense_1=Dense(2 => 3), bn=BatchNorm(3), dense_2=Dense(3 => 5)),
           dense_3=Dense(5 => 1));

julia> rng = Random.default_rng();

julia> ps, st = Lux.setup(rng, c);

julia> # Makes parameters of Dense Layers inside Chain zero
       function zero_dense_params(l, ps, st, name)
           if l isa Dense
               println("zeroing params of $name")
               ps = merge(ps, (; weight=zero.(ps.weight), bias=zero.(ps.bias)))
           end
           return l, ps, st
       end;

julia> _, ps_new, _ = Lux.Experimental.layer_map(zero_dense_params, c, ps, st);
zeroing params of KeyPath(:chain, :dense_1)
zeroing params of KeyPath(:chain, :dense_2)
zeroing params of KeyPath(:dense_3,)

julia> all(iszero, (ps_new.chain.dense_1.weight, ps_new.chain.dense_1.bias,
                    ps_new.chain.dense_2.weight, ps_new.chain.dense_2.bias,
                    ps_new.dense_3.weight, ps_new.dense_3.bias))
true

source


Debugging Functionality

Model not working properly! Here are some functionalities to help you debug you Lux model.

# Lux.Experimental.@debug_modeMacro.
julia
@debug_mode layer kwargs...

Recurses into the layer and replaces the inner most non Container Layers with a Lux.Experimental.DebugLayer.

See Lux.Experimental.DebugLayer for details about the Keyword Arguments.

source


# Lux.Experimental.DebugLayerType.
julia
DebugLayer(layer::AbstractLuxLayer;
    nan_check::Union{Symbol, StaticSymbol, Val}=static(:both),
    error_check::Union{StaticBool, Bool, Val{true}, Val{false}}=True(),
    location::KeyPath=KeyPath())

A wrapper over Lux layers that adds checks for NaNs and errors. This is useful for debugging.

Arguments

  • layer: The layer to be wrapped.

Extended Help

Keyword Arguments

  • nan_check: Whether to check for NaNs in the input, parameters, and states. Can be :both, :forward, :backward, or :none.

  • error_check: Whether to check for errors in the layer. If true, will throw an error if the layer fails.

  • location: The location of the layer. Use Lux.Experimental.@debug_mode to construct this layer to populate this value correctly.

Input / Output

Inputs and outputs are the same as the layer unless one of the nan_check or error_check criteria is met.

If nan_check is enabled and NaNs are detected then a DomainError is thrown. If error_check is enabled, then any errors in the layer are thrown with useful information to track where the error originates.

ChainRules Compatible Reverse Mode AD Tools

nan_check for the backward mode only works with ChainRules Compatible Reverse Mode AD Tools currently.

Disable After Debugging

This layer is only meant to be used for debugging. If used for actual training or inference, will lead to extremely bad performance.

See Lux.Experimental.@debug_mode to construct this layer.

source


Tied Parameters

# Lux.Experimental.share_parametersFunction.
julia
share_parameters(ps, sharing)
share_parameters(ps, sharing, new_parameters)

Updates the parameters in ps with a common set of parameters new_parameters that are shared between each list in the nested list sharing. (That was kind of a mouthful, the example should make it clear).

Arguments

  • ps: Original parameters.

  • sharing: A nested list of lists of accessors of ps which need to shate the parameters (See the example for details). (Each list in the list must be disjoint)

  • new_parameters: If passed the length of new_parameters must be equal to the length of sharing. For each vector in sharing the corresponding parameter in new_parameters will be used. (If not passed, the parameters corresponding to the first element of each vector in sharing will be used).

Returns

Updated Parameters having the same structure as ps.

Example

julia
julia> model = Chain(; d1=Dense(2 => 4, tanh),
           d3=Chain(; l1=Dense(4 => 2), l2=Dense(2 => 4)), d2=Dense(4 => 2))
Chain(
    d1 = Dense(2 => 4, tanh),           # 12 parameters
    d3 = Chain(
        l1 = Dense(4 => 2),             # 10 parameters
        l2 = Dense(2 => 4),             # 12 parameters
    ),
    d2 = Dense(4 => 2),                 # 10 parameters
)         # Total: 44 parameters,
          #        plus 0 states.

julia> ps, st = Lux.setup(Xoshiro(0), model);

julia> # share parameters of (d1 and d3.l1) and (d3.l2 and d2)
       ps = Lux.Experimental.share_parameters(ps, (("d3.l2", "d1"), ("d2", "d3.l1")));

julia> ps.d3.l2.weight === ps.d1.weight &&
           ps.d3.l2.bias === ps.d1.bias &&
           ps.d2.weight === ps.d3.l1.weight &&
           ps.d2.bias === ps.d3.l1.bias
true

ComponentArrays

ComponentArrays doesn't allow sharing parameters. Converting the returned parameters to a ComponentArray will silently cause the parameter sharing to be undone.

source