NNlib
Neural Network Primitives with custom bindings for different accelerator backends in Julia.
Reexport of NNlib
Lux doesn't re-export all of NNlib
for now. Directly loading NNlib
is the recommended approach for accessing these functions.
Attention
NNlib.dot_product_attention Function
dot_product_attention(query, key, value, [bias]; [fdrop, mask, nheads])
Multihead dot product attention used in transformer architectures.
The input arrays must have the first two dimensions given by the number of features and the sequence length, then an arbitrary number of batch dimensions or none.
Returns the attention output array of size (v_dim, q_len, batch_size...)
and the attention scores of size (kv_len, q_len, nheads, batch_size...)
.
See also dot_product_attention_scores
if you only need the attention scores.
Arguments
query
: Query array of size(qk_dim, q_len, batch_size...)
.key
: Key array of size(qk_dim, kv_len, batch_size...)
.value
: Value array of size(v_dim, kv_len, batch_size...)
.bias
: Eithernothing
or an array broadcastable to size(kv_len, q_len, nheads, batch_size)
. It will be added to the attention scores before applying the softmax. Defaultnothing
.fdrop
: A dropout function or layer to be applied on the attention scores right after the softmax. Defaultidentity
(no dropout).mask
: Eithernothing
or a boolean array broadcastable to size(kv_len, q_len, nheads, batch_size)
. The mask is applied to the attention scores just before the softmax. Seemake_causal_mask
fore creating causal masks. Defaultnothing
.nheads
: Number of heads to split the input arrays into. Default1
.
Examples
q, k, v = rand(10, 20, 2), rand(10, 30, 2), rand(20, 30, 2)
y, α = dot_product_attention(q, k, v)
NNlib.dot_product_attention_scores Function
dot_product_attention_scores(query, key, [bias]; [fdrop, mask])
Return the attention scores for the dot_product_attention
. Input arrays must have dimensions (num_features ÷ nheads, nheads, sequence_length, batch_size)
.
See dot_product_attention
for more details.
NNlib.make_causal_mask Function
make_causal_mask(x, dims=2)
Return a boolean square matrix m
of the same type as x
and of side size(x, dims)
. Its elements are set such that m[i, j] == i ≤ j
.
Can be used to mask the attention scores in dot_product_attention
.
Softmax
NNlib.softmax Function
softmax(x; dims = 1)
Softmax turns input array x
into probability distributions that sum to 1 along the dimensions specified by dims
. It is semantically equivalent to the following:
softmax(x; dims = 1) = exp.(x) ./ sum(exp.(x), dims = dims)
with additional manipulations enhancing numerical stability.
For a matrix input x
it will by default (dims = 1
) treat it as a batch of vectors, with each column independent. Keyword dims = 2
will instead treat rows independently, and so on.
See also logsoftmax
.
Examples
julia> softmax([1, 2, 3])
3-element Vector{Float64}:
0.09003057317038046
0.24472847105479764
0.6652409557748218
julia> softmax([1 2 3; 2 2 2]) # dims=1
2×3 Matrix{Float64}:
0.268941 0.5 0.731059
0.731059 0.5 0.268941
julia> softmax([1 2 3; 2 2 2]; dims=2)
2×3 Matrix{Float64}:
0.0900306 0.244728 0.665241
0.333333 0.333333 0.333333
Note that, when used with Flux.jl, softmax
must not be passed to layers like Dense
which accept an activation function. The activation is broadcasted over the result, thus applies to individual numbers. But softmax
always needs to see the whole column.
julia> using Flux
julia> x = randn(Float32, 4, 4, 3, 13);
julia> model = Chain(Conv((4, 4), 3 => 8, tanh), Flux.flatten, Dense(8 => 7), softmax);
julia> model(x) |> size
(7, 13)
julia> Dense(4 => 7, softmax)(x)
ERROR: `softmax(x)` called with a number, but it expects an array.
NNlib.logsoftmax Function
logsoftmax(x; dims = 1)
Computes the log of softmax in a more numerically stable way than directly taking log.(softmax(xs))
. Commonly used in computing cross entropy loss.
It is semantically equivalent to the following:
logsoftmax(x; dims = 1) = x .- log.(sum(exp.(x), dims = dims))
See also softmax
.
Pooling
NNlib.PoolDims Type
PoolDims(x_size::NTuple{M}, k::Union{NTuple{L, Int}, Int};
stride=k, padding=0, dilation=1) where {M, L}
Dimensions for a "pooling" operation that can have an arbitrary input size, kernel size, stride, dilation, and channel count. Used to dispatch onto efficient implementations at compile-time.
NNlib.maxpool Function
maxpool(x, k::NTuple{N, Integer}; pad=0, stride=k)
Perform max pool operation with window size k
on input tensor x
.
Arguments:
x
andk
: Expectsndim(x) ∈ 3:5
, and alwayslength(k) == ndim(x) - 2
pad
: Seepad_zeros
for details.stride
: Either a tuple with the same length ask
, or one integer for all directions. Default isk
.
NNlib.meanpool Function
meanpool(x, k::NTuple{N, Integer}; pad=0, stride=k)
Perform mean pool operation with window size k
on input tensor x
.
Arguments:
x
andk
: Expectsndim(x) ∈ 3:5``, and always
length(k) == ndim(x) - 2`pad
: Seepad_zeros
for details.stride
: Either a tuple with the same length ask
, or one integer for all directions. Default isk
.
NNlib.lpnormpool Function
lpnormpool(x, p::Real, k::NTuple{N, Integer}; pad=0, stride=k)
Perform Lp pool operation with value of the Lp norm p
and window size k
on input tensor x
, also known as LPPool in pytorch. This pooling operator from Learned-Norm Pooling for Deep Feedforward and Recurrent Neural Networks.
Arguments:
x
andk
: Expectsndim(x) ∈ 3:5``, and always
length(k) == ndim(x) - 2`p
is restricted to0 < p < Inf
.pad
: Seepad_zeros
for details.stride
: Either a tuple with the same length ask
, or one integer for all directions. Default isk
.
For all elements x
in a size k
window, lpnormpool computes (∑ᵢ xᵢ^p)^(1 / p)
as an element of the output.
Thus lpnormpool(x, 1, k) ./ prod(k) ≈ meanpool(x, k)
and lpnormpool(x, 2, k).^2 ./ prod(k) ≈ meanpool(x.^2, k)
.
Padding
NNlib.pad_reflect Function
pad_reflect(x, pad::Tuple; [dims])
pad_reflect(x, pad::Int; [dims])
Pad the array x
reflecting its values across the border.
pad
can a tuple of integers (l1, r1, ..., ln, rn)
of some length 2n
that specifies the left and right padding size for each of the dimensions in dims
. If dims
is not given, it defaults to the first n
dimensions.
If pad
is an integer, it is applied on both sides on every dimension in dims
. In this case, dims
defaults to the first ndims(x)-2
dimensions (i.e. excludes the channel and batch dimension).
See also pad_repeat
, pad_symmetric
, pad_circular
, and pad_constant
.
julia> r = reshape(1:9, 3, 3)
3×3 reshape(::UnitRange{Int64}, 3, 3) with eltype Int64:
1 4 7
2 5 8
3 6 9
julia> pad_reflect(r, (1,2,1,2))
6×6 Matrix{Int64}:
5 2 5 8 5 2
4 1 4 7 4 1
5 2 5 8 5 2
6 3 6 9 6 3
5 2 5 8 5 2
4 1 4 7 4 1
NNlib.pad_symmetric Function
pad_symmetric(x, pad::Tuple; [dims])
pad_symmetric(x, pad::Int; [dims])
Pad the array x
reflecting its values symmetrically across the border, i.e. the border values of x
are present in the padding values, in contrast to pad_reflect
.
pad
can a tuple of integers (l1, r1, ..., ln, rn)
of some length 2n
that specifies the left and right padding size for each of the dimensions in dims
. If dims
is not given, it defaults to the first n
dimensions.
If pad
is an integer, it is applied on both sides on every dimension in dims
. In this case, dims
defaults to the first ndims(x)-2
dimensions (i.e. excludes the channel and batch dimension).
See also pad_repeat
, pad_reflect
, pad_circular
, and pad_constant
.
julia> r = reshape(1:9, 3, 3)
3×3 reshape(::UnitRange{Int64}, 3, 3) with eltype Int64:
1 4 7
2 5 8
3 6 9
julia> pad_symmetric(r, (1,2,1,2))
6×6 Matrix{Int64}:
1 1 4 7 7 4
1 1 4 7 7 4
2 2 5 8 8 5
3 3 6 9 9 6
3 3 6 9 9 6
2 2 5 8 8 5
NNlib.pad_circular Function
pad_circular(x, pad::Tuple; [dims])
pad_circular(x, pad::Int; [dims])
Pad the array x
"circularly" across the border by wrapping around values from the opposite side of x
.
pad
can a tuple of integers (l1, r1, ..., ln, rn)
of some length 2n
that specifies the left and right padding size for each of the dimensions in dims
. If dims
is not given, it defaults to the first n
dimensions.
If pad
is an integer, it is applied on both sides on every dimension in dims
. In this case, dims
defaults to the first ndims(x)-2
dimensions (i.e. excludes the channel and batch dimension).
The pad length on either side in any dimension must not exceed the size of x
in that dimension, i.e. pad_circular
is not able to create abitrary sized tilings of x
.
See also pad_repeat
, pad_reflect
, pad_symmetric
, and pad_constant
.
julia> r = reshape(1:9, 3, 3)
3×3 reshape(::UnitRange{Int64}, 3, 3) with eltype Int64:
1 4 7
2 5 8
3 6 9
julia> pad_circular(r, (1,2,1,2))
6×6 Matrix{Int64}:
9 3 6 9 3 6
7 1 4 7 1 4
8 2 5 8 2 5
9 3 6 9 3 6
7 1 4 7 1 4
8 2 5 8 2 5
NNlib.pad_repeat Function
pad_repeat(x, pad::Tuple; [dims])
pad_repeat(x, pad::Int; [dims])
Pad the array x
repeating the values on the border.
pad
can a tuple of integers (l1, r1, ..., ln, rn)
of some length 2n
that specifies the left and right padding size for each of the dimensions in dims
. If dims
is not given, it defaults to the first n
dimensions.
If pad
is an integer, it is applied on both sides on every dimension in dims
. In this case, dims
defaults to the first ndims(x)-2
dimensions (i.e. excludes the channel and batch dimension).
See also pad_reflect
, pad_symmetric
, pad_circular
, and pad_constant
.
julia> r = reshape(1:9, 3, 3)
3×3 reshape(::UnitRange{Int64}, 3, 3) with eltype Int64:
1 4 7
2 5 8
3 6 9
julia> pad_repeat(r, (1,2,3,4))
6×10 Matrix{Int64}:
1 1 1 1 4 7 7 7 7 7
1 1 1 1 4 7 7 7 7 7
2 2 2 2 5 8 8 8 8 8
3 3 3 3 6 9 9 9 9 9
3 3 3 3 6 9 9 9 9 9
3 3 3 3 6 9 9 9 9 9
NNlib.pad_constant Function
pad_constant(x, pad::Tuple, val = 0; [dims = :])
pad_constant(x, pad::Int, val = 0; [dims = :])
Pad the array x
with the constant value val
.
pad
can be a tuple of integers. If it is of some length 2 * length(dims)
that specifies the left and right padding size for each of the dimensions in dims
as (l1, r1, ..., ln, rn)
. If supplied with a tuple of length length(dims)
instead, it applies symmetric padding. If dims
is not given, it defaults to all dimensions.
For integer pad
input, it is applied on both sides on every dimension in dims
.
See also pad_zeros
, pad_repeat
, pad_reflect
, pad_symmetric
, and pad_circular
.
julia> r = reshape(1:4, 2, 2)
2×2 reshape(::UnitRange{Int64}, 2, 2) with eltype Int64:
1 3
2 4
julia> pad_constant(r, (1, 2, 3, 4), 8)
5×9 Matrix{Int64}:
8 8 8 8 8 8 8 8 8
8 8 8 1 3 8 8 8 8
8 8 8 2 4 8 8 8 8
8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8
julia> pad_constant(r, 1, 8)
4×4 Matrix{Int64}:
8 8 8 8
8 1 3 8
8 2 4 8
8 8 8 8
julia> r = reshape(1:27, 3, 3, 3)
3×3×3 reshape(::UnitRange{Int64}, 3, 3, 3) with eltype Int64:
[:, :, 1] =
1 4 7
2 5 8
3 6 9
[:, :, 2] =
10 13 16
11 14 17
12 15 18
[:, :, 3] =
19 22 25
20 23 26
21 24 27
julia> pad_constant(r, (2,1), dims = 1) # assymetric padding
6×3×3 Array{Int64, 3}:
[:, :, 1] =
0 0 0
0 0 0
1 4 7
2 5 8
3 6 9
0 0 0
[:, :, 2] =
0 0 0
0 0 0
10 13 16
11 14 17
12 15 18
0 0 0
[:, :, 3] =
0 0 0
0 0 0
19 22 25
20 23 26
21 24 27
0 0 0
julia> pad_constant(r, (2,1, 3), dims = (1,2)) # padding must always be either the same length as dims, or double it
ERROR: ArgumentError: Could not parse padding (2, 1, 3) and dims (1, 2)
Stacktrace:
[...]
NNlib.pad_zeros Function
pad_zeros(x, pad::Tuple; [dims])
pad_zeros(x, pad::Int; [dims])
Pad the array x
with zeros. Equivalent to pad_constant
with the constant equal to 0.
Convolution
NNlib.conv Function
conv(x, w; stride = 1, pad = 0, dilation = 1, flipped = false, groups = 1)
Apply convolution filter w
to input x
. x
and w
are 3d/4d/5d tensors in 1d/2d/3d convolutions respectively. x
and w
may have real or complex element types.
NNlib.ConvDims Type
ConvDims
Type system-level information about convolution dimensions. Critical for things like im2col!()
to generate efficient code, and helpful to reduce the number of kwargs getting passed around.
NNlib.depthwiseconv Function
depthwiseconv(x, w; stride=1, pad=0, dilation=1, flipped=false)
Depthwise convolution operation with filter w
on input x
. x
and w
are 3d/4d/5d tensors in 1d/2d/3d convolutions respectively.
NNlib.DepthwiseConvDims Type
DepthwiseConvDims
Concrete subclass of ConvDims
for a depthwise convolution. Differs primarily due to characterization by C_in, C_mult, rather than C_in, C_out. Useful to be separate from DenseConvDims primarily for channel calculation differences.
NNlib.DenseConvDims Type
DenseConvDims
Concrete subclass of ConvDims
for a normal, dense, conv2d/conv3d.
NNlib.unfold Function
unfold(x, kernel_size; stride = 1, pad = 0, dilation = 0, flipped = true)
Places sliding windows of x into a container tensor of size (num_windows, window_size, batchsize)
. The window size is determined by the prod(spatial dims of kernel)*input_channels
. The number of sliding windows will match those of convolution (conv
) with the same kernel_size and arguments. Note that by default conv
flips the spatial dimensions of its kernel (default flipped=false
), whereas unfold
does not (default flipped=true
). Uses NNlib.im2col!
as backend.
See also fold
, the adjoint/transpose operator and a potential inverse of unfold
.
Example
The below example demonstrates that unfold
uses the same sliding windows as conv
. In general batched_mul
+ unfold
should not be used to achieve convolution.
julia> x = reshape([100 2 3 40 5 6 700], 7, 1, 1); # 1D data, 1 channel, batch of 1
julia> w = reshape([1 0 -1], 3, 1, 1); # 1D conv kernel of length 3
julia> kws = (pad=1, stride=2, flipped=true); # use same args for conv and unfold
julia> z = NNlib.unfold(x, size(w); kws...)
4×3×1 Array{Int64, 3}:
[:, :, 1] =
0 100 2
2 3 40
40 5 6
6 700 0
julia> y1 = conv(x, w; kws...)
4×1×1 Array{Int64, 3}:
[:, :, 1] =
-2
-38
34
6
julia> y2 = z ⊠ w # ⊠ (\boxtimes) is NNlib.batched_mul
4×1×1 Array{Int64, 3}:
[:, :, 1] =
-2
-38
34
6
NNlib.fold Function
fold(y, output_size, kernel_size; stride = 1, pad = 0, dilation = 0, flipped = true)
The adjoint/transpose operator of unfold
. It accumulates sliding windows from the output of unfold
into a container tensor of size output_size
. An inverse to unfold
may be obtained (in some cases) by using fold
and accounting for scaling issues with a divisor (see example). Uses NNlib.col2im!
as backend.
See also unfold
.
Example
julia> x = reshape([100 2 3 40 5 6 700], 7, 1, 1); # 1D data, 1 channel, batch of 1
julia> y = NNlib.unfold(x, (3,1,1)) # sliding window of size 3
5×3×1 Array{Int64, 3}:
[:, :, 1] =
100 2 3
2 3 40
3 40 5
40 5 6
5 6 700
julia> z = NNlib.fold(y, size(x), (3,1,1)) # sum of contributions in y. 100 appears once, 40 three times
7×1×1 Array{Int64, 3}:
[:, :, 1] =
100
4
9
120
15
12
700
julia> divisor = NNlib.fold(NNlib.unfold(ones(size(x)...), (3,1,1)), size(x), (3,1,1))
7×1×1 Array{Float64, 3}:
[:, :, 1] =
1.0
2.0
3.0
3.0
3.0
2.0
1.0
julia> z ./ divisor
7×1×1 Array{Float64, 3}:
[:, :, 1] =
100.0
2.0
3.0
40.0
5.0
6.0
700.0
In general, an inverse to unfold
does not exist if divisor
contains zeros.
Upsampling
NNlib.upsample_nearest Function
upsample_nearest(x, scale::NTuple{S,Int})
upsample_nearest(x; size::NTuple{S,Int})
Upsamples the array x
by integer multiples along the first S
dimensions. Subsequent dimensions of x
are not altered.
Either the scale
factors or the final output size
can be specified.
See also upsample_bilinear
, for two dimensions of an N=4
array.
Example
julia> upsample_nearest([1 2 3; 4 5 6], (2, 3))
4×9 Matrix{Int64}:
1 1 1 2 2 2 3 3 3
1 1 1 2 2 2 3 3 3
4 4 4 5 5 5 6 6 6
4 4 4 5 5 5 6 6 6
julia> ans == upsample_nearest([1 2 3; 4 5 6]; size=(4, 9)) # equivalent
true
julia> upsample_nearest([1 2 3; 4 5 6], (2,))
4×3 Matrix{Int64}:
1 2 3
1 2 3
4 5 6
4 5 6
julia> ans == upsample_nearest([1 2 3; 4 5 6], size=(4,))
true
NNlib.∇upsample_nearest Function
∇upsample_nearest(Δ::AbstractArray{T,3}, scales::NTuple{S, <:Integer}) where T
Arguments
Δ
: Incoming gradient array, backpropagated from downstream layersscales
: scales by which the image was upsampled in the first place
Outputs
dx
: Downsampled version ofΔ
NNlib.upsample_linear Function
upsample_linear(x::AbstractArray{T,3}, scale::Real; align_corners::Bool = true)
upsample_linear(x::AbstractArray{T,3}; size::Integer, align_corners::Bool = true)
Upsamples the first dimension of the array x
by the upsample provided scale
, using linear interpolation. As an alternative to using scale
, the resulting array size
can be directly specified with a keyword argument.
The size of the output is equal to (scale*S1, S2, S3)
, where S1, S2, S3 = size(x)
.
NNlib.∇upsample_linear Function
∇upsample_linear(Δ::AbstractArray{T,3}; size::Integer, align_corners::Bool = true) where T
Arguments
Δ
: Incoming gradient array, backpropagated from downstream layerssize
: Size of the image upsampled in the first place
Outputs
dx
: Downsampled version ofΔ
NNlib.upsample_bilinear Function
upsample_bilinear(x::AbstractArray{T,4}, scale::NTuple{2,Real}; align_corners::Bool = true)
upsample_bilinear(x::AbstractArray{T,4}; size::NTuple{2,Integer}, align_corners::Bool = true)
Upsamples the first 2 dimensions of the array x
by the upsample factors stored in scale
, using bilinear interpolation. As an alternative to using scale
, the resulting image size
can be directly specified with a keyword argument.
The size of the output is equal to (scale[1]*S1, scale[2]*S2, S3, S4)
, where S1, S2, S3, S4 = size(x)
.
Examples
julia> x = reshape(Float32[1 2 3; 4 5 6], (2,3,1,1))
2×3×1×1 Array{Float32, 4}:
[:, :, 1, 1] =
1.0 2.0 3.0
4.0 5.0 6.0
julia> upsample_bilinear(x, (2, 3))
4×9×1×1 Array{Float32, 4}:
[:, :, 1, 1] =
1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0
2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0
3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
4.0 4.25 4.5 4.75 5.0 5.25 5.5 5.75 6.0
julia> ans == upsample_bilinear(x; size=(4, 9)) # specify ouput size instead
true
julia> upsample_bilinear(x, (2.5, 3.5)) # non-integer scaling factors are allowed
5×10×1×1 Array{Float32, 4}:
[:, :, 1, 1] =
1.0 1.22222 1.44444 1.66667 1.88889 … 2.33333 2.55556 2.77778 3.0
1.75 1.97222 2.19444 2.41667 2.63889 3.08333 3.30556 3.52778 3.75
2.5 2.72222 2.94444 3.16667 3.38889 3.83333 4.05556 4.27778 4.5
3.25 3.47222 3.69444 3.91667 4.13889 4.58333 4.80556 5.02778 5.25
4.0 4.22222 4.44444 4.66667 4.88889 5.33333 5.55556 5.77778 6.0
NNlib.∇upsample_bilinear Function
∇upsample_bilinear(Δ::AbstractArray{T,4}; size::NTuple{2,Integer}, align_corners::Bool = true) where T
Arguments
Δ
: Incoming gradient array, backpropagated from downstream layerssize
: Lateral (W,H) size of the image upsampled in the first place
Outputs
dx
: Downsampled version ofΔ
NNlib.upsample_trilinear Function
upsample_trilinear(x::AbstractArray{T,5}, scale::NTuple{3,Real}; align_corners::Bool = true)
upsample_trilinear(x::AbstractArray{T,5}; size::NTuple{3,Integer}, align_corners::Bool = true)
Upsamples the first 3 dimensions of the array x
by the upsample factors stored in scale
, using trilinear interpolation. As an alternative to using scale
, the resulting image size
can be directly specified with a keyword argument.
The size of the output is equal to (scale[1]*S1, scale[2]*S2, scale[3]*S3, S4, S5)
, where S1, S2, S3, S4, S5 = size(x)
.
Examples
upsample_trilinear(x, (2, 3, 4))
upsample_trilinear(x; size=(4, 9, 11)) # specify ouput size instead
upsample_trilinear(x, (2.5, 3.5, pi)) # non-integer scaling factors are allowed
NNlib.∇upsample_trilinear Function
∇upsample_trilinear(Δ::AbstractArray{T,5}; size::NTuple{3,Integer}, align_corners::Bool = true) where T
Arguments
Δ
: Incoming gradient array, backpropagated from downstream layerssize
: Lateral size & depth (W,H,D) of the image upsampled in the first place
Outputs
dx
: Downsampled version ofΔ
NNlib.pixel_shuffle Function
pixel_shuffle(x, r::Integer)
Pixel shuffling operation, upscaling by a factor r
.
For 4-arrays representing N
images, the operation converts input size(x) == (W, H, r^2*C, N)
to output of size (r*W, r*H, C, N)
. For D
-dimensional data, it expects ndims(x) == D+2
with channel and batch dimensions, and divides the number of channels by r^D
.
Used in super-resolution networks to upsample towards high resolution features. Reference: Shi et. al., "Real-Time Single Image and Video Super-Resolution ...", CVPR 2016, https://arxiv.org/abs/1609.05158
Examples
julia> x = [10i + j + channel/10 for i in 1:2, j in 1:3, channel in 1:4, batch in 1:1]
2×3×4×1 Array{Float64, 4}:
[:, :, 1, 1] =
11.1 12.1 13.1
21.1 22.1 23.1
[:, :, 2, 1] =
11.2 12.2 13.2
21.2 22.2 23.2
[:, :, 3, 1] =
11.3 12.3 13.3
21.3 22.3 23.3
[:, :, 4, 1] =
11.4 12.4 13.4
21.4 22.4 23.4
julia> pixel_shuffle(x, 2) # 4 channels used up as 2x upscaling of image dimensions
4×6×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
11.1 11.3 12.1 12.3 13.1 13.3
11.2 11.4 12.2 12.4 13.2 13.4
21.1 21.3 22.1 22.3 23.1 23.3
21.2 21.4 22.2 22.4 23.2 23.4
julia> y = [i + channel/10 for i in 1:3, channel in 1:6, batch in 1:1]
3×6×1 Array{Float64, 3}:
[:, :, 1] =
1.1 1.2 1.3 1.4 1.5 1.6
2.1 2.2 2.3 2.4 2.5 2.6
3.1 3.2 3.3 3.4 3.5 3.6
julia> pixel_shuffle(y, 2) # 1D image, with 6 channels reduced to 3
6×3×1 Array{Float64, 3}:
[:, :, 1] =
1.1 1.3 1.5
1.2 1.4 1.6
2.1 2.3 2.5
2.2 2.4 2.6
3.1 3.3 3.5
3.2 3.4 3.6
Rotation
Rotate images in the first two dimensions of an array.
NNlib.imrotate Function
imrotate(arr::AbstractArray{T, 4}, θ; method=:bilinear, rotation_center=size(arr) .÷ 2 .+ 1)
Rotates an array in the first two dimensions around the center pixel rotation_center
. The default value of rotation_center
is defined such that there is a integer center pixel for even and odd sized arrays which it is rotated around. For an even sized array of size (4,4)
this would be (3,3)
, for an odd array of size (3,3)
this would be (2,2)
However, rotation_center
can be also non-integer numbers if specified.
The angle θ
is interpreted in radians.
The adjoint is defined with ChainRulesCore.jl. This method also runs with CUDA (and in principle all KernelAbstractions.jl supported backends).
Keywords
method=:bilinear
for bilinear interpolation ormethod=:nearest
for nearest neighbourrotation_center=size(arr) .÷ 2 .+ 1
means there is a real center pixel around it is rotated.
Examples
julia> arr = zeros((4,4,1,1)); arr[2,2,1,1] = 1;
julia> arr
4×4×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
julia> NNlib.imrotate(arr, deg2rad(90)) # rotation around (3,3)
4×4×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
julia> NNlib.imrotate(arr, deg2rad(90), rotation_center=(2,2))
4×4×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
julia> arr = zeros((3,3,1,1)); arr[1,2,1,1] = 1
1
julia> arr
3×3×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
0.0 1.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
julia> NNlib.imrotate(arr, deg2rad(45))
3×3×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
0.0 0.207107 0.0
0.0 0.0 0.207107
0.0 0.0 0.0
julia> NNlib.imrotate(arr, deg2rad(45), method=:nearest)
3×3×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
0.0 0.0 1.0
0.0 0.0 0.0
0.0 0.0 0.0
NNlib.∇imrotate Function
∇imrotate(dy, arr::AbstractArray{T, 4}, θ; method=:bilinear,
rotation_center=size(arr) .÷ 2 .+ 1)
Adjoint for imrotate
. Gradient only with respect to arr
and not θ
.
Arguments
dy
: input gradientarr
: Input from primal computationθ
: rotation angle in radiansmethod=:bilinear
ormethod=:nearest
rotation_center=size(arr) .÷ 2 .+ 1
rotates around a real center pixel for even and odd sized arrays
Batched Operations
NNlib.batched_mul Function
batched_mul(A, B) -> C
A ⊠ B # \boxtimes
Batched matrix multiplication. Result has C[:,:,k...] == A[:,:,k...] * B[:,:,k...]
where k...
represent any indices in the last dimensions.
If ndims(A) == ndims(B) == 3
and size(B,3) == 1
then instead C[:,:,k] == A[:,:,k] * B[:,:,1]
, and similarly for A
.
To transpose each matrix, apply batched_transpose
to the array, or batched_adjoint
for conjugate-transpose:
julia> A, B = randn(2,5,17), randn(5,9,17);
julia> A ⊠ B |> size
(2, 9, 17)
julia> batched_adjoint(A) |> size
(5, 2, 17)
julia> batched_mul(A, batched_adjoint(randn(9,5,17))) |> size
(2, 9, 17)
julia> A ⊠ randn(5,9,1) |> size
(2, 9, 17)
julia> batched_transpose(A) == PermutedDimsArray(A, (2,1,3))
true
The equivalent PermutedDimsArray
may be used in place of batched_transpose
. Other permutations are also handled by BLAS, provided that the batch index k
is not the first dimension of the underlying array. Thus PermutedDimsArray(::Array, (1,3,2))
and PermutedDimsArray(::Array, (3,1,2))
are fine.
However, A = PermutedDimsArray(::Array, (3,2,1))
is not acceptable to BLAS, since the batch dimension is the contiguous one: stride(A,3) == 1
. This will be copied, as doing so is faster than batched_mul_generic!
.
Both this copy
and batched_mul_generic!
produce @debug
messages, and setting for instance ENV["JULIA_DEBUG"] = NNlib
will display them.
batched_mul(A::Array{T,3}, B::Matrix)
batched_mul(A::Matrix, B::Array{T,3})
A ⊠ B
This is always matrix-matrix multiplication, but either A
or B
may lack a batch index.
When
B
is a matrix, result hasC[:,:,k] == A[:,:,k] * B[:,:]
for allk
.When
A
is a matrix, thenC[:,:,k] == A[:,:] * B[:,:,k]
. This can also be done by reshaping and calling*
, for instanceA ⊡ B
using TensorCore.jl, but is implemented here usingbatched_gemm
instead ofgemm
.
julia> randn(16,8,32) ⊠ randn(8,4) |> size
(16, 4, 32)
julia> randn(16,8,32) ⊠ randn(8,4,1) |> size # equivalent
(16, 4, 32)
julia> randn(16,8) ⊠ randn(8,4,32) |> size
(16, 4, 32)
See also batched_vec
to regard B
as a batch of vectors, A[:,:,k] * B[:,k]
.
NNlib.batched_mul! Function
batched_mul!(C, A, B) -> C
batched_mul!(C, A, B, α=1, β=0)
In-place batched matrix multiplication, equivalent to mul!(C[:,:,k], A[:,:,k], B[:,:,k], α, β)
for all k
. If size(B,3) == 1
then every batch uses B[:,:,1]
instead.
This will call batched_gemm!
whenever possible. For real arrays this means that, for X ∈ [A,B,C]
, either stride(X,1)==1
or stride(X,2)==1
, the latter may be caused by batched_transpose
or by for instance PermutedDimsArray(::Array, (3,1,2))
. Unlike batched_mul
this will never make a copy.
For complex arrays, the wrapper made by batched_adjoint
must be outermost to be seen. In this case the strided accepted by BLAS are more restricted, if stride(C,1)==1
then only stride(AorB::BatchedAdjoint,2) == 1
is accepted.
NNlib.batched_adjoint Function
batched_transpose(A::AbstractArray{T,3})
batched_adjoint(A)
Equivalent to applying transpose
or adjoint
to each matrix A[:,:,k]
.
These exist to control how batched_mul
behaves, as it operates on such matrix slices of an array with ndims(A)==3
.
PermutedDimsArray(A, (2,1,3))
is equivalent to batched_transpose(A)
, and is also understood by batched_mul
(and more widely supported elsewhere).
BatchedTranspose{T, S} <: AbstractBatchedMatrix{T, 3}
BatchedAdjoint{T, S}
Lazy wrappers analogous to Transpose
and Adjoint
, returned by batched_transpose
etc.
NNlib.batched_transpose Function
batched_transpose(A::AbstractArray{T,3})
batched_adjoint(A)
Equivalent to applying transpose
or adjoint
to each matrix A[:,:,k]
.
These exist to control how batched_mul
behaves, as it operates on such matrix slices of an array with ndims(A)==3
.
PermutedDimsArray(A, (2,1,3))
is equivalent to batched_transpose(A)
, and is also understood by batched_mul
(and more widely supported elsewhere).
BatchedTranspose{T, S} <: AbstractBatchedMatrix{T, 3}
BatchedAdjoint{T, S}
Lazy wrappers analogous to Transpose
and Adjoint
, returned by batched_transpose
etc.
NNlib.batched_vec Function
batched_vec(A::Array{T,3}, B::Matrix)
batched_vec(A::Array{T,3}, b::Vector)
Batched matrix-vector multiplication: the result has C[:,:,k] == A[:,:,k] * B[:,k]
for all k
, or else C[:,:,k] == A[:,:,k] * b
for b::Vector
.
With the same argument types, batched_mul(A, B)
would regard B
as a fixed matrix, not a batch of vectors. Both reshape and then call batched_mul(::Array{T,3}, ::Array{T,3})
.
julia> A, B, b = randn(16,8,32), randn(8,32), randn(8);
julia> batched_vec(A,B) |> size
(16, 32)
julia> batched_vec(A,b) |> size
(16, 32)
Gather and Scatter
NNlib.gather Function
NNlib.gather(src, idx) -> dst
Reverse operation of scatter
. Gathers data from source src
and writes it in a destination dst
according to the index array idx
. For each k
in CartesianIndices(idx)
, assign values to dst
according to
dst[:, ... , k] .= src[:, ... , idx[k]...]
Notice that if idx
is a vector containing integers and src
is a matrix, previous expression simplifies to
dst[:, k] .= src[:, idx[k]]
and k
will run over 1:length(idx)
.
The elements of idx
can be integers or integer tuples and may be repeated. A single src
column can end up being copied into zero, one, or multiple dst
columns.
See gather!
for an in-place version.
Examples
julia> NNlib.gather([1,20,300,4000], [2,4,2])
3-element Vector{Int64}:
20
4000
20
julia> NNlib.gather([1 2 3; 4 5 6], [1,3,1,3,1])
2×5 Matrix{Int64}:
1 3 1 3 1
4 6 4 6 4
gather(src, IJK...)
Convert the tuple of integer vectors IJK
to a tuple of CartesianIndex
and call gather
on it: gather(src, CartesianIndex.(IJK...))
.
Examples
julia> src = reshape([1:15;], 3, 5)
3×5 Matrix{Int64}:
1 4 7 10 13
2 5 8 11 14
3 6 9 12 15
julia> NNlib.gather(src, [1, 2], [2, 4])
2-element Vector{Int64}:
4
11
NNlib.gather! Function
NNlib.gather!(dst, src, idx)
Reverse operation of scatter!
. Gathers data from source src
and writes it in destination dst
according to the index array idx
. For each k
in CartesianIndices(idx)
, assign values to dst
according to
dst[:, ... , k] .= src[:, ... , idx[k]...]
Notice that if idx
is a vector containing integers, and both dst
and src
are matrices, previous expression simplifies to
dst[:, k] .= src[:, idx[k]]
and k
will run over 1:length(idx)
.
The elements of idx
can be integers or integer tuples and may be repeated. A single src
column can end up being copied into zero, one, or multiple dst
columns.
See gather
for an allocating version.
NNlib.scatter Function
NNlib.scatter(op, src, idx; [init, dstsize])
Scatter operation allocating a destination array dst
and calling scatter!(op, dst, src, idx)
on it.
If keyword
init
is provided, it is used to initialize the content ofdst
. Otherwise, the init values is inferred from the reduction operatorop
for some common operators (e.g.init = 0
forop = +
).If
dstsize
is provided, it will be used to define the size of destination array, otherwise it will be inferred bysrc
andidx
.
See scatter!
for full details on how idx
works.
Examples
julia> NNlib.scatter(+, [10,100,1000], [3,1,2])
3-element Vector{Int64}:
100
1000
10
julia> NNlib.scatter(+, [1 2 3 4; 5 6 7 8], [2,1,1,5])
2×5 Matrix{Int64}:
5 1 0 0 4
13 5 0 0 8
julia> NNlib.scatter(*, [10,200,3000], [1,4,2]; init = 10, dstsize = 6)
6-element Vector{Int64}:
100
30000
10
2000
10
10
NNlib.scatter! Function
NNlib.scatter!(op, dst, src, idx)
Scatter operation, which writes data in src
into dst
at locations idx
. A binary reduction operator op
is applied during the scatter. For each index k
in idx
, accumulates values in dst
according to
dst[:, ..., idx[k]...] = (op).(dst[:, ..., idx[k]...], src[:, ..., k...])
Arguments
op
: Operations to be applied ondst
andsrc
, e.g.+
,-
,*
,/
,max
,min
andmean
.dst
: The destination forsrc
to aggregate to. This argument will be mutated.src
: The source data for aggregating.idx
: The mapping for aggregation from source (index) to destination (value). Theidx
array can contain either integers or tuples.
Examples
julia> NNlib.scatter!(+, ones(3), [10,100], [1,3])
3-element Vector{Float64}:
11.0
1.0
101.0
julia> NNlib.scatter!(*, fill(0.5, 2, 4), [1 10; 100 1000], [3,2])
2×4 Matrix{Float64}:
0.5 5.0 0.5 0.5
0.5 500.0 50.0 0.5
Sampling
NNlib.grid_sample Function
grid_sample(input::AbstractArray{T, 4}, grid::AbstractArray{T, 4}; padding_mode = :zeros)
Given input
, compute output by sampling input
values at pixel locations from grid
. Uses bilinear interpolation to calculate output values.
This implementation assumes the extrema (-1
and 1
) are considered as referring to the center points of the input’s corner pixels (i.e. align corners is true
).
Arguments
input
: Input array in(W_in, H_in, C, N)
shape.grid
: Input grid in(2, W_out, H_out, N)
shape. Where for each(W_out, H_out, N)
grid contains(x, y)
coordinates that specify sampling locations normalized by theinput
shape. Therefore,x
andy
should have values in[-1, 1]
range. For example,(x = -1, y = -1)
is the left-top pixel ofinput
, and(x = 1, y = 1)
is the right-bottom pixel ofinput
. Out-of-bound values are handled according to thepadding_mode
.padding_mode
: Out-of-bound padding.:zeros
to use0
for out-of-bound grid locations.:border
to use border values for out-of-bound grid locations. Default is:zeros
.
Returns
(W_out, H_out, C, N)
sampled grid from input
.
Examples
In the example below, grid contains two out-of-bound sampling locations, which are handled differently, depending on the padding_mode
.
julia> x = reshape(collect(1.0:4.0), (2, 2, 1, 1))
2×2×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
1.0 3.0
2.0 4.0
julia> grid = Array{Float64}(undef, 2, 3, 2, 1);
julia> grid[:, 1, 1, 1] .= (-3, -1);
julia> grid[:, 2, 1, 1] .= (0, -1);
julia> grid[:, 3, 1, 1] .= (1, -1);
julia> grid[:, 1, 2, 1] .= (-1, 1);
julia> grid[:, 2, 2, 1] .= (0, 1);
julia> grid[:, 3, 2, 1] .= (3, 1);
julia> grid_sample(x, grid; padding_mode=:zeros)
3×2×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
0.0 3.0
1.5 3.5
2.0 0.0
julia> grid_sample(x, grid; padding_mode=:border)
3×2×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
1.0 3.0
1.5 3.5
2.0 4.0
NNlib.∇grid_sample Function
∇grid_sample(Δ::AbstractArray{T, 4}, input::AbstractArray{T, 4}, grid::AbstractArray{T, 4}; padding_mode = :zeros) where T
Arguments
Δ
: Input gradient in(W_out, H_out, C, N)
shape (same as output of the primal computation).input
: Input from primal computation in(W_in, H_in, C, N)
shape.grid
: Grid from primal computation in(2, W_out, H_out, N)
shape.padding_mode
: Out-of-bound padding.:zeros
to use0
for out-of-bound grid locations.:border
to use border values for out-of-bound grid locations. Should be the same as in primal computation. Default is:zeros
.
Returns
dinput
(same shape as input
) and dgrid
(same shape as grid
) gradients.
Losses
NNlib.ctc_loss Function
ctc_loss(ŷ, y)
Computes the connectionist temporal classification loss between ŷ
and y
. ŷ
must be a classes-by-time matrices, i.e., each row represents a class and each column represents a time step. Additionally, the logsoftmax
function will be applied to ŷ
, so ŷ
must be the raw activation values from the neural network and not, for example, the activations after being passed through a softmax
activation function. y
must be a 1D array of the labels associated with ŷ
. The blank label is assumed to be the last label category in ŷ
, so it is equivalent to size(ŷ, 1)
. Used for sequence-to-sequence classification problems such as speech recognition and handwriting recognition where the exact time-alignment of the output (e.g., letters) is not needed to solve the problem. See Graves et al. (2006) or Graves (2012) for mathematical details.
Miscellaneous
NNlib.logsumexp Function
logsumexp(x; dims = :)
Computes log.(sum(exp.(x); dims))
in a numerically stable way. Without dims
keyword this returns a scalar.
See also logsoftmax
.
NNlib.glu Function
glu(x, dim = 1)
The gated linear unit from the "Language Modeling with Gated Convolutional Networks" paper.
Calculates a .* sigmoid(b)
, where x
is split in half along given dimension dim
to form a
and b
.
Tip
within_gradient
function currently doesn't work for Enzyme. Prefer to use LuxLib.Utils.within_autodiff
if needed. Though pay heed that this function is not part of the public API.
NNlib.within_gradient Function
within_gradient(x) --> Bool
Returns false
except when used inside a gradient
call, when it returns true
. Useful for Flux regularisation layers which behave differently during training and inference.
This should work with any ChainRules-based differentiation package, in which case x
is ignored. But Tracker.jl overloads with_gradient(x::TrackedArray)
, thus for widest use you should pass it an array whose gradient is of interest. There is also an overload for ForwardDiff.jl's Dual
types (and arrays of them).
Examples
julia> using ForwardDiff, Zygote, NNlib
julia> f_good(x) = if NNlib.within_gradient(x)
@show 10x
else
x
end;
julia> Zygote.withgradient(f_good, 1.0)
10x = 10.0
(val = 10.0, grad = (10.0,))
julia> ForwardDiff.derivative(f_good, 1.0)
10x = Dual{ForwardDiff.Tag{typeof(f_good), Float64}}(10.0,10.0)
10.0
julia> f_bad(x, y) = if any(NNlib.within_gradient, (x, y))
@show x * y
else
x / y
end;
julia> Zygote.withgradient(f_bad, 2.0, 3.0)
(val = 0.6666666666666666, grad = (0.3333333333333333, -0.2222222222222222))
julia> ForwardDiff.derivative(x -> f_bad(x, 3.0), 2.0)
x * y = Dual{ForwardDiff.Tag{var"#9#10", Float64}}(6.0,3.0)
3.0
What goes wrong in f_bad
is that Zygote knows any
to be non-differentiable, and thus completely ignores its contents. This is not a perfect mechanism, and the only style recommended is precisely that of f_good
above.
Tip
Use LuxLib.API.bias_activation!!
or LuxLib.API.bias_activation
instead of NNlib.bias_act!
.
NNlib.bias_act! Function
bias_act!(σ, x, b)
This is equivalent to x .= σ.(x .+ b)
, also replacing sigmoid
& tanh
with sigmoid_fast
& tanh_fast
. It will only overwrite x
when x isa StridedArray{<:AbstractFloat}
.
When used within a gradient, it will overwrite only when σ
has a method of derivatives_given_output
which does not need the input at all. Such methods are defined by e.g. @scalar_rule relu(x) Ω > 0
where the derivative contains only Ω
(the output) not x
.
Warning
This is not safe to use if x
is still needed for the gradient of some other function. Incorrect use will give silently wrong answers. It is intended mainly for Flux layers, in which the previous operation is known to be safe, e.g. bias_act!(σ, weight * input, bias)
for a Dense
layer.
Dropout
Tip
Use LuxLib.API.dropout
instead of NNlib.dropout
.
NNlib.dropout Function
dropout([rng], A, p; [dims])
Returns an array in which each element of A
is either replaced with zero, with probability p
, or else multiplied by 1/(1-p)
.
By default every element is treated independently. With keyword dims=1
, a choice is made for every value of the 1st index i.e. each row of a matrix is either zero or not.
Optional first argument is the random number generator used.
Examples
julia> dropout(ones(2, 10), 0.2)
2×10 Matrix{Float64}:
1.25 1.25 0.0 1.25 1.25 1.25 1.25 1.25 1.25 1.25
1.25 1.25 1.25 0.0 1.25 1.25 0.0 1.25 1.25 1.25
julia> mean(dropout(ones(10^4, 5), 0.2), dims=1)
1×5 Matrix{Float64}:
0.998 1.00075 0.99125 0.99575 1.00075
julia> dropout(ones(5, 5), 0.7, dims=1) # whole row the same
5×5 Matrix{Float64}:
3.33333 3.33333 3.33333 3.33333 3.33333
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
3.33333 3.33333 3.33333 3.33333 3.33333
0.0 0.0 0.0 0.0 0.0
julia> mean(dropout(ones(10^4, 5), 0.3, dims=1), dims=1)
1×5 Matrix{Float64}:
1.00571 1.00571 1.00571 1.00571 1.00571
NNlib.dropout! Function
dropout!(B, A, p; [dims])
This does exactly B .= dropout(A, p; dims)
, or rather, it's the implementation of out-of-place dropout
.
Internal NNlib Functions
These functions are not part of the public API and are subject to change without notice.
NNlib.BatchedAdjoint Type
batched_transpose(A::AbstractArray{T,3})
batched_adjoint(A)
Equivalent to applying transpose
or adjoint
to each matrix A[:,:,k]
.
These exist to control how batched_mul
behaves, as it operates on such matrix slices of an array with ndims(A)==3
.
PermutedDimsArray(A, (2,1,3))
is equivalent to batched_transpose(A)
, and is also understood by batched_mul
(and more widely supported elsewhere).
BatchedTranspose{T, S} <: AbstractBatchedMatrix{T, 3}
BatchedAdjoint{T, S}
Lazy wrappers analogous to Transpose
and Adjoint
, returned by batched_transpose
etc.
NNlib.∇conv_filter_direct! Function
∇conv_filter_direct!(dw, x, dy, cdims; alpha=1, beta=0)
Calculate the gradient imposed upon w
in the convolution y = x * w
.
NNlib._check_trivial_rotations! Function
_check_trivial_rotations!(out, arr, θ, rotation_center)
When θ = 0 || π /2 || π || 3/2 || π
and if rotation_center
is in the middle of the array. For an even array of size 4, the rotation_center would need to be 2.5. For an odd array of size 5, the rotation_center would need to be 3.
In those cases, rotations are trivial just by reversing or swapping some axes.
NNlib.fast_act Function
NNlib.fast_act(f, [x::AbstractArray])
Replaces f == tanh
with tanh_fast
, etc.
Takes an optional 2nd argument, so that you can disable this replacement for some array or element types.
NNlib.spectrogram Function
spectrogram(waveform;
pad::Int = 0, n_fft::Int, hop_length::Int, window,
center::Bool = true, power::Real = 2.0,
normalized::Bool = false, window_normalized::Bool = false,
)
Create a spectrogram or a batch of spectrograms from a raw audio signal.
Arguments
pad::Int
: Then amount of padding to apply on both sides.window_normalized::Bool
: Whether to normalize the waveform by the window’s L2 energy.power::Real
: Exponent for the magnitude spectrogram (must be ≥ 0) e.g.,1
for magnitude,2
for power, etc. If0
, complex spectrum is returned instead.
See stft
for other arguments.
Returns
Spectrogram in the shape (T, F, B)
, where T
is the number of window hops and F = n_fft ÷ 2 + 1
.
NNlib.is_strided Function
is_strided(A::AbstractArray) -> Bool
This generalises A isa StridedArray
to treat wrappers like A::PermutedDimsArray
, for which it returns is_strided(parent(A))
.
It returns true
for CuArray
s, and PermutedDimsArray
s of those.
Other wrappers (defined outside Base, LinearAlgebra) are assumed not to break strided-ness, and hence also return is_strided(parent(A))
. This correctly handles things like NamedDimsArray
wihch don't alter indexing. However, it's a little pessimistic in that e.g. a view
of such a container will return false
, even in cases where the same view
of parent(A)
would be a StridedArray
.
NNlib.conv_direct! Function
conv_direct!(y, x, w, cdims; alpha=1, beta=0)
Direct convolution implementation; used for debugging, tests, and mixing/matching of strange datatypes within a single convolution. Uses naive nested for loop implementation and does not attempt to optimize performance. Rather, this implementation is intended to be maximally understandable and debuggable, to aid in testing other, more performant implementations. We also explicitly support mixing and matching of strange datatypes, so that if the user really wants to convolve an image of UInt8
's with a Float16
kernel, storing the result in a Float32
output, there is at least a function call for that madness.
The keyword arguments alpha
and beta
control accumulation behavior; this function calculates y = alpha * x * w + beta * y
, therefore by setting beta
to a nonzero value, the user is able to accumulate values into a preallocated y
buffer, or by setting alpha
to a nonunitary value, an arbitrary gain factor can be applied.
By defaulting beta
to false
, we make use of the Bradbury promotion trick to override NaN
's that may pre-exist within our output buffer, as false*NaN == 0.0
, whereas 0.0*NaN == NaN
. Only set beta
if you are certain that none of the elements within y
are NaN
.
The basic implementation performs 3-dimensional convolution; 1-dimensional and 2- dimensional cases are supported by simply reshaping y
, x
and w
, for which wrapper methods are available.
NNlib.gemm! Function
gemm!()
Low-level gemm!() call with pointers, borrowed from Knet.jl
Calculates C = alpha*op(A)*op(B) + beta*C
, where:
transA
andtransB
setop(X)
to be eitheridentity()
ortranspose()
alpha and beta are scalars
op(A) is an (M, K) matrix
op(B) is a (K, N) matrix
C is an (M, N) matrix.
NNlib.calc_padding_regions Function
calc_padding_regions(dims)
Padding is a jerk. A HUGE jerk that tries to sneak a bunch of conditionals and edge cases (quite literally) into our beautiful stencil operations such as convolution, pooling, etc... The way we deal with this is to, first, deal with everything in 3d, and then define a single padding region helper function that returns the seven regions that all 3d operations must deal with, including the central "unpadded" region where we can run at full bore, not paying any attention to padding.
NNlib.∇depthwiseconv_data_im2col! Function
∇depthwiseconv_data_im2col!(dx, w, dy, cdims, col=similar(dx); alpha=1, beta=0)
Depwthwise conv2d backward pass onto the input using im2col and GEMM. See conv_im2col!
for explanation of optional parameters.
NNlib._prepare_imrotate Function
_prepare_imrotate(arr, θ, rotation_center)
Prepate sin
and cos
, creates the output array and converts type of rotation_center
if required.
NNlib.insert_singleton_spatial_dimension Function
insert_singleton_spatial_dimension(cdims::ConvDims)
When converting a 1d convolution to a 2d, or a 2d to a 3d, we need to insert a singleton spatial dimension at the end of the spatial dimensions. This does so for a ConvDims.
NNlib._fast_broadcast! Function
_fast_broadcast!(f, x, y, z...)
This does x .= f.(x, y, z...)
, but works around an issue with broadcasting that prevents SIMD in such cases. Can perhaps be removed once https://github.com/JuliaLang/julia/issues/43153 is fixed.
Has an rrule
to avoid mutation within derivatives.
Warning
Not intended for general use. Uses @inbounds
but does not check sizes! Assumes that f
has no derivative!
NNlib.hann_window Function
hann_window(
window_length::Int, ::Type{T} = Float32; periodic::Bool = true,
) where T <: Real
Hann window function (ref: https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows).
Where
julia> lineplot(hann_window(100); width=30, height=10)
┌──────────────────────────────┐
1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠚⠉⠉⠉⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡔⠁⠀⠀⠀⠀⠀⠘⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⢀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢣⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢦⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⢀⠞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⢀⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢇⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢦⠀⠀⠀⠀│
│⠀⠀⠀⢠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠣⡀⠀⠀│
0 │⣀⣀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢤⣀│
└──────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀100⠀
Arguments:
window_length::Int
: Size of the window.::Type{T}
: Elemet type of the window.
Keyword Arguments:
periodic::Bool
: Iftrue
(default), returns a window to be used as periodic function. Iffalse
, return a symmetric window. Following always holds:
julia> N = 256;
julia> hann_window(N; periodic=true) ≈ hann_window(N + 1; periodic=false)[1:end - 1]
true
julia> hann_window(N) ≈ hamming_window(N; α=0.5f0, β=0.5f0)
true
Returns:
Vector of length window_length
and eltype T
.
NNlib._rng_from_array Function
_rng_from_array(x)
Return the random number generator most appropriate for x
: CUDA.default_rng()
for CuArray
, else Random.default_rng()
NNlib.∇depthwiseconv_filter_im2col! Function
∇depthwiseconv_filter_im2col!(dw, w, dy, cdims, col=similar(dw, ∇filter_im2col_dims(cdims));
alpha=1, beta=0)
Depthwise conv backward pass onto the weights using im2col and GEMM. See conv_im2col!
for explanation of optional parameters.
NNlib.istft Function
istft(y;
n_fft::Int, hop_length::Int = n_fft ÷ 4, window = nothing,
center::Bool = true, normalized::Bool = false,
return_complex::Bool = false,
original_length::Union{Nothing, Int} = nothing,
)
Inverse Short-time Fourier Transform.
Return the least squares estimation of the original signal
Arguments:
y
: Input complex array in the(n_fft, n_frames, B)
shape. WhereB
is the optional batch dimension.
Keyword Arguments:
n_fft::Int
: Size of Fourier transform.hop_length::Int
: Distance between neighboring sliding window frames.window
: Window function that was applied to the input ofstft
. Ifnothing
(default), then no window was applied.center::Bool
: Whether input tostft
was padded on both sides so that-th frame is centered at time . Padding is done with pad_reflect
function.normalized::Bool
: Whether input tostft
was normalized.return_complex::Bool
: Whether the output should be complex, or if the input should be assumed to derive from a real signal and window.original_length::Union{Nothing, Int}
: Optional size of the first dimension of the input tostft
. Helps restoring the exactstft
input size. Otherwise, the array might be a bit shorter.
NNlib.transpose_swapbatch Function
transpose_swapbatch(x::AbstractArray)
Given an AbstractArray, swap its batch and channel axes, as we must during transposed convolution. We do this to the operands during convolution, and then again to the output once we're done.
NNlib.transpose_pad Function
transpose_pad(cdims::ConvDims)
Transposed convolution can be calculated in terms of typical convolution with some extra padding. This method computes the padding of the convolution that would result in the transposed convolution of two operands, in essence taking care of that "extra padding". Note that this method should almost always be accompanied by a call that predilates one of the operands.
NNlib.power_to_db Function
power_to_db(s; ref::Real = 1f0, amin::Real = 1f-10, top_db::Real = 80f0)
Convert a power spectrogram (amplitude squared) to decibel (dB) units.
Arguments
s
: Input power.ref
: Scalar w.r.t. which the input is scaled.amin
: Minimum threshold fors
.top_db
: Threshold the output attop_db
below the peak:max.(s_db, maximum(s_db) - top_db)
.
Returns
s_db ~= 10 * log10(s) - 10 * log10(ref)
NNlib.col2im! Function
col2im!(x, col, cdims, beta=0)
Does the inverse of im2col!()
, converting col
back into a 3d image, used for backward passes, transposed convolutions, etc...
Note that this method has not been optimized in the same way as im2col()
has, because it is slightly more complicated due to the more chaotic data access patterns, and I'm not desperate enough yet.
NNlib.depthwiseconv_im2col! Function
depthwiseconv_im2col!(y, x, w, cdims, col=similar(x); alpha=1, beta=0)
Perform a depthwise convolution using im2col and GEMM, store the result in y
. See conv_im2col!
for explanation of optional parameters.
NNlib.storage_type Function
storage_type(A) -> Type
Removes all wrappers to return the Array
or CuArray
(or whatever) type within.
julia> view(reshape(ones(10)',2,5),:, 3:4) |> storage_type
Array{Float64,1}
julia> reshape(sparse(rand(10)), 5,2) |> storage_type
SparseVector{Float64,Int64}
NNlib.im2col_dims Function
im2col_dims(c::ConvDims)
im2col calculates, for each output pixel, the "convolution" of N kernels where N is the number of output channels, by doing a matrix multiply. The dimensions of that matrix are given by this function.
Note that because im2col is multithreaded, we need to allocate a separate workspace of memory per-thread; hence the dimensions returned by this will depend on the number of threads Julia is currently running with.
NNlib.∇depthwiseconv_filter_direct! Function
∇depthwiseconv_filter_direct!(dw, x, dy, cdims; alpha=1, beta=0)
Calculate the gradient imposed upon w
in the depthwise convolution y = x * w
.
NNlib.reverse_indices Function
reverse_indices(idx)
Return the reverse indices of idx
. The indices of idx
will be values, and values of idx
will be index.
Arguments
idx
: The indices to be reversed. Accepts array or cuarray of integer, tuple orCartesianIndex
.
NNlib.∇conv_filter_im2col! Function
∇conv_filter_im2col!(dw, x, dy, cdims, col=similar(dw, ∇filter_im2col_dims(cdims));
alpha=1, beta=0)
Conv backward pass onto the weights using im2col and GEMM; stores the result in dw
. See conv_im2col!
for explanation of optional parameters.
NNlib.conv_im2col! Function
conv_im2col!(y, x, w, cdims, col=similar(x); alpha=1, beta=0)
Perform a convolution using im2col and GEMM, store the result in y
. The kwargs alpha
and beta
control accumulation behavior; internally this operation is implemented as a matrix multiply that boils down to y = alpha * x * w + beta * y
, thus by setting beta
to a nonzero value, multiple results can be accumulated into y
, or by setting alpha
to a nonunitary value, various gain factors can be applied.
Note for the particularly performance-minded, you can provide a pre-allocated col
, which should eliminate any need for large allocations within this method.
NNlib.∇conv_data_direct! Function
∇conv_data_direct!(dx, dy, w, cdims; alpha=1, beta=0)
Calculate the gradient imposed upon x
in the convolution y = x * w
.
NNlib.scatter_dims Function
Performs dimensional consistency checks and return the dimensionality of the scattered objects.
NNlib.∇conv_data_im2col! Function
∇conv_data_im2col!(dx, w, dy, cdims, col=similar(dx); alpha=1, beta=0)
Conv2d backward pass onto the input using im2col and GEMM; stores the result in dx
. See conv_im2col!
for explanation of optional parameters.
NNlib.storage_typejoin Function
storage_typejoin(A, B, C, ...) -> Type
Reduces with Base.promote_typejoin
, in order that this conveys useful information for dispatching to BLAS. It does not tell you what container to allocate:
julia> storage_typejoin(rand(2), rand(Float32, 2))
Array{T,1} where T
julia> eltype(ans) <: LinearAlgebra.BlasFloat
false
julia> storage_typejoin(rand(2), rand(2,3), rand(2,3,4))
Array{Float64,N} where N
NNlib.add_blanks Function
add_blanks(z) Adds blanks to the start and end of z
, and between items in z
NNlib.∇filter_im2col_dims Function
∇filter_im2col_dims(c::ConvDims)
Like im2col_dims
, but saves some memory because multiple (Julia) threads are not required for the filter gradient calculation.
Note: in the future, this may return Dims{2}
instead of Dims{3}
.
NNlib._bilinear_helper Function
_bilinear_helper(yrot, xrot, yrot_f, xrot_f, yrot_int, xrot_int)
Some helper variables
NNlib._triangular_filterbanks Function
_triangular_filterbanks(
freq_points::Vector{Float32}, all_freqs::Vector{Float32})
Create triangular filter banks.
Arguments:
freq_points::Vector{Float32}
: Filter midpoints of sizen_filters
.all_freqs::Vector{Float32}
: Frequency points of sizen_freqs
.
Returns:
Array of size (n_freqs, n_filters)
.
NNlib.∇depthwiseconv_data_direct! Function
∇depthwiseconv_data_direct!(dx, dy, w, cdims; alpha=1, beta=0)
Calculate the gradient imposed upon x
in the depthwise convolution y = x * w
. We make use of the fact that a depthwise convolution is equivalent to C_in
separate normal convolutions between that channel of x
and the C_mult
different kernels that get applied to it. The output of such a convolution is the gradient imposed upon that particular channel of x
, and so we simply walk through x
, calculating the gradient for each batch and channel independently.
NNlib.predilated_size Function
predilated_size(x_size::Tuple, dilation::Tuple)
Calculate the size of a predilated x
given a particular dilation factor. This is used within predilate()
and transpose_cdims()
.
NNlib.stft Function
stft(x;
n_fft::Int, hop_length::Int = n_fft ÷ 4, window = nothing,
center::Bool = true, normalized::Bool = false,
)
Short-time Fourier transform (STFT).
The STFT computes the Fourier transform of short overlapping windows of the input, giving frequency components of the signal as they change over time.
where
Arguments:
x
: Input, must be either a 1D time sequence ((L,)
shape) or a 2D batch of time sequence ((L, B)
shape).
Keyword Arguments:
n_fft::Int
: Size of Fourier transform.hop_length::Int
: Distance between neighboring sliding window frames.window
: Optional window function to apply. Must be 1D vector0 < length(window) ≤ n_fft
. If window is shorter thann_fft
, it is padded with zeros on both sides. Ifnothing
(default), then no window is applied.center::Bool
: Whether to pad input on both sides so that-th frame is centered at time . Padding is done with pad_reflect
function.normalized::Bool
: Whether to return normalized STFT, i.e. multiplied with.
Returns:
Complex array of shape (n_fft, n_frames, B)
, where B
is the optional batch dimension.
NNlib.hamming_window Function
hamming_window(
window_length::Int, ::Type{T} = Float32; periodic::Bool = true,
α::T = T(0.54), β::T = T(0.46),
) where T <: Real
Hamming window function (ref: https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows). Generalized version of hann_window
.
Where
julia> lineplot(hamming_window(100); width=30, height=10)
┌──────────────────────────────┐
1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠚⠉⠉⠉⠢⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠎⠁⠀⠀⠀⠀⠀⠈⢢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⡀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⣠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⡀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⢰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡄⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⡰⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀│
│⠀⠀⠀⢀⠴⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢄⠀⠀⠀│
│⠀⢀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⣀⠀│
0 │⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉│
└──────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀100⠀
Arguments:
window_length::Int
: Size of the window.::Type{T}
: Elemet type of the window.
Keyword Arguments:
periodic::Bool
: Iftrue
(default), returns a window to be used as periodic function. Iffalse
, return a symmetric window. Following always holds:
julia> N = 256;
julia> hamming_window(N; periodic=true) ≈ hamming_window(N + 1; periodic=false)[1:end - 1]
true
α::Real
: Coefficient α in the equation above.β::Real
: Coefficient β in the equation above.
Returns:
Vector of length window_length
and eltype T
.
NNlib.maximum_dims Function
maximum_dims(dims)
Given an array of CartesianIndex{N}
or NTuple{N,Int}
, returns a tuple containing the maximum of all the 1st entries, all the 2nd entries, and so on up to N
.
Given an array of integers, returns (maximum(dims),)
.
(These arguments are what scatter
understands.)
NNlib.BatchedTranspose Type
batched_transpose(A::AbstractArray{T,3})
batched_adjoint(A)
Equivalent to applying transpose
or adjoint
to each matrix A[:,:,k]
.
These exist to control how batched_mul
behaves, as it operates on such matrix slices of an array with ndims(A)==3
.
PermutedDimsArray(A, (2,1,3))
is equivalent to batched_transpose(A)
, and is also understood by batched_mul
(and more widely supported elsewhere).
BatchedTranspose{T, S} <: AbstractBatchedMatrix{T, 3}
BatchedAdjoint{T, S}
Lazy wrappers analogous to Transpose
and Adjoint
, returned by batched_transpose
etc.
NNlib._rotate_coordinates Function
_rotate_coordinates(sinθ, cosθ, i, j, rotation_center, round_or_floor)
This rotates the coordinates and either applies round(nearest neighbour) or floor for :bilinear interpolation)
NNlib.melscale_filterbanks Function
melscale_filterbanks(;
n_freqs::Int, n_mels::Int, sample_rate::Int,
fmin::Float32 = 0f0, fmax::Float32 = Float32(sample_rate ÷ 2))
Create triangular Mel scale filter banks (ref: https://en.wikipedia.org/wiki/Mel_scale). Each column is a filterbank that highlights its own frequency.
Arguments:
n_freqs::Int
: Number of frequencies to highlight.n_mels::Int
: Number of mel filterbanks.sample_rate::Int
: Sample rate of the audio waveform.fmin::Float32
: Minimum frequency in Hz.fmax::Float32
: Maximum frequency in Hz.
Returns:
Filterbank matrix of shape (n_freqs, n_mels)
where each column is a filterbank.
julia> n_mels = 8;
julia> fb = melscale_filterbanks(; n_freqs=200, n_mels, sample_rate=16000);
julia> plot = lineplot(fb[:, 1]);
julia> for i in 2:n_mels
lineplot!(plot, fb[:, i])
end
julia> plot
┌────────────────────────────────────────┐
1 │⠀⡀⢸⠀⢸⠀⠀⣧⠀⠀⢸⡄⠀⠀⠀⣷⠀⠀⠀⠀⠀⣷⠀⠀⠀⠀⠀⠀⢀⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⡇⢸⡆⢸⡇⠀⣿⠀⠀⡜⡇⠀⠀⢰⠋⡆⠀⠀⠀⢰⠁⡇⠀⠀⠀⠀⠀⡸⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⣿⢸⡇⡇⡇⢰⠹⡄⠀⡇⢱⠀⠀⢸⠀⢣⠀⠀⠀⡜⠀⢸⡀⠀⠀⠀⢀⠇⠀⠈⡇⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⣿⡇⡇⡇⡇⢸⠀⡇⢀⠇⠸⡀⠀⡇⠀⠸⡀⠀⢀⠇⠀⠀⢇⠀⠀⠀⡸⠀⠀⠀⠸⡄⠀⠀⠀⠀⠀⠀⠀│
│⢠⢻⡇⡇⡇⢱⢸⠀⢇⢸⠀⠀⡇⢀⠇⠀⠀⡇⠀⢸⠀⠀⠀⠸⡀⠀⢠⠇⠀⠀⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀│
│⢸⢸⡇⢱⡇⢸⡇⠀⢸⢸⠀⠀⢣⢸⠀⠀⠀⢸⠀⡇⠀⠀⠀⠀⢇⠀⡜⠀⠀⠀⠀⠀⠈⢇⠀⠀⠀⠀⠀⠀│
│⢸⢸⡇⢸⠀⢸⡇⠀⢸⡇⠀⠀⢸⡎⠀⠀⠀⠈⣶⠁⠀⠀⠀⠀⠸⣤⠃⠀⠀⠀⠀⠀⠀⠘⡆⠀⠀⠀⠀⠀│
│⢸⠀⡇⢸⠀⠀⡇⠀⠀⡇⠀⠀⠀⡇⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⢱⡀⠀⠀⠀⠀│
│⢸⢸⡇⢸⠀⢸⡇⠀⢸⡇⠀⠀⢸⢇⠀⠀⠀⢀⠿⡀⠀⠀⠀⠀⢰⠛⡄⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀│
│⢸⢸⡇⡸⡇⢸⡇⠀⢸⢸⠀⠀⡜⢸⠀⠀⠀⢸⠀⡇⠀⠀⠀⠀⡎⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠘⡆⠀⠀⠀│
│⢸⢸⡇⡇⡇⡸⢸⠀⡎⢸⠀⠀⡇⠈⡆⠀⠀⡇⠀⢸⠀⠀⠀⢰⠁⠀⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠸⡄⠀⠀│
│⡇⢸⡇⡇⡇⡇⢸⠀⡇⠈⡆⢰⠁⠀⡇⠀⢰⠁⠀⠈⡆⠀⠀⡎⠀⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀│
│⡇⢸⢸⡇⡇⡇⠸⣰⠃⠀⡇⡸⠀⠀⢸⠀⡜⠀⠀⠀⢣⠀⢸⠁⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠈⢇⠀│
│⡇⡇⢸⠇⢸⡇⠀⣿⠀⠀⢣⡇⠀⠀⠸⣄⠇⠀⠀⠀⠸⡀⡇⠀⠀⠀⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡄│
0 │⣇⣇⣸⣀⣸⣀⣀⣟⣀⣀⣸⣃⣀⣀⣀⣿⣀⣀⣀⣀⣀⣿⣀⣀⣀⣀⣀⣀⣈⣇⣀⣀⣀⣀⣀⣀⣀⣀⣀⣱│
└────────────────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀200⠀
NNlib.logaddexp Function
logaddexp(a, b)
Adds log-space a
and b
such that the result equals log(exp(a)+exp(b))
NNlib.depthwiseconv_direct! Function
depthwiseconv_direct!(y, x, w, cdims; alpha=1, beta=0)
Direct depthwise convolution implementation; used for debugging, tests, and mixing/ matching of strange datatypes within a single convolution. Uses naive nested for loop implementation and does not attempt to optimize performance. Rather, this implementation is intended to be maximally understandable and debuggable, to aid in testing other, more performant implementations. We also explicitly support mixing and matching of strange datatypes, so that if the user really wants to convolve an image of UInt8
's with a Float16
kernel, storing the result in a Float32
output, there is at least a function call for that madness.
One subtlety about depthwise convolutions; the shape of a depthwise convolutional kernel is (spatial_dims..., C_mult, C_in)
, so the axis that must match with the number of channels in x
is the last, not the second-to-last, as in a normal dense convolution.
See the docstring for conv_direct!()
for more on the optional parameters.
NNlib.im2col! Function
im2col!(col, x, cdims)
Converts a 3d image x
into a matrix col
for usage with GEMM-calculated convolution. Patches of x
of size (kernel_w, kernel_h, kernel_d, C_in) will be extracted and laid out along the rows of col
, one for each output pixel. This routine is used by all im2col-based convolutions, just with extra singleton dimensions added in the case of 2d
or 1d
images.
NNlib.predilate Function
predilate(x, dilation::Tuple)
Places elements of x
within a lattice of zeros, used in expressing a transposed convolution in terms of normal convolution. Note that while we call this "predilation" for aesthetic reasons, you are typically passing a "stride" value into here. Yes, transposed convolution is confusing.
NNlib.safe_div Function
safe_div(x, y)
Returns x/y
unless y==0
, in which case it just returns x
. (Used internally by scatter
.)