Skip to content

MNIST Classification using Neural ODEs

To understand Neural ODEs, users should look up these lecture notes. We recommend users to directly use DiffEqFlux.jl, instead of implementing Neural ODEs from scratch.

Package Imports

julia
using Lux, ComponentArrays, SciMLSensitivity, LuxCUDA, Optimisers, OrdinaryDiffEqTsit5,
      Random, Statistics, Zygote, OneHotArrays, InteractiveUtils, Printf
using MLDatasets: MNIST
using MLUtils: DataLoader, splitobs

CUDA.allowscalar(false)
Precompiling Lux...
    829.9 ms  ✓ MLDataDevices → MLDataDevicesChainRulesCoreExt
   5917.8 ms  ✓ LuxLib
   9360.6 ms  ✓ Lux
  3 dependencies successfully precompiled in 17 seconds. 106 already precompiled.
Precompiling LuxComponentArraysExt...
   1454.8 ms  ✓ Lux → LuxComponentArraysExt
  1 dependency successfully precompiled in 2 seconds. 113 already precompiled.
Precompiling SciMLSensitivity...
    868.7 ms  ✓ DifferentiationInterface
    438.2 ms  ✓ DifferentiationInterface → DifferentiationInterfaceFiniteDiffExt
    630.4 ms  ✓ DifferentiationInterface → DifferentiationInterfaceStaticArraysExt
    440.4 ms  ✓ DifferentiationInterface → DifferentiationInterfaceChainRulesCoreExt
   1163.6 ms  ✓ DifferentiationInterface → DifferentiationInterfaceTrackerExt
    833.7 ms  ✓ DifferentiationInterface → DifferentiationInterfaceForwardDiffExt
   1636.3 ms  ✓ DifferentiationInterface → DifferentiationInterfaceZygoteExt
   3537.2 ms  ✓ DifferentiationInterface → DifferentiationInterfaceReverseDiffExt
    663.2 ms  ✓ DifferentiationInterface → DifferentiationInterfaceSparseArraysExt
   2936.2 ms  ✓ SciMLJacobianOperators
   5746.2 ms  ✓ DifferentiationInterface → DifferentiationInterfaceEnzymeExt
   4480.9 ms  ✓ DiffEqCallbacks
  22909.3 ms  ✓ SciMLSensitivity
  13 dependencies successfully precompiled in 33 seconds. 278 already precompiled.
Precompiling LuxLibSLEEFPiratesExt...
   2517.7 ms  ✓ LuxLib → LuxLibSLEEFPiratesExt
  1 dependency successfully precompiled in 3 seconds. 97 already precompiled.
Precompiling LuxLibLoopVectorizationExt...
   4128.5 ms  ✓ LuxLib → LuxLibLoopVectorizationExt
  1 dependency successfully precompiled in 4 seconds. 105 already precompiled.
Precompiling LuxLibEnzymeExt...
   1331.1 ms  ✓ LuxLib → LuxLibEnzymeExt
  1 dependency successfully precompiled in 2 seconds. 130 already precompiled.
Precompiling LuxEnzymeExt...
   6834.7 ms  ✓ Lux → LuxEnzymeExt
  1 dependency successfully precompiled in 7 seconds. 146 already precompiled.
Precompiling LuxLibTrackerExt...
   3386.0 ms  ✓ LuxLib → LuxLibTrackerExt
  1 dependency successfully precompiled in 4 seconds. 101 already precompiled.
Precompiling LuxTrackerExt...
   2179.7 ms  ✓ Lux → LuxTrackerExt
  1 dependency successfully precompiled in 2 seconds. 114 already precompiled.
Precompiling LuxLibReverseDiffExt...
   4245.8 ms  ✓ LuxLib → LuxLibReverseDiffExt
  1 dependency successfully precompiled in 5 seconds. 99 already precompiled.
Precompiling LuxReverseDiffExt...
   4356.0 ms  ✓ Lux → LuxReverseDiffExt
  1 dependency successfully precompiled in 5 seconds. 115 already precompiled.
Precompiling LuxZygoteExt...
   2939.4 ms  ✓ Lux → LuxZygoteExt
  1 dependency successfully precompiled in 3 seconds. 166 already precompiled.
Precompiling LuxLibCUDAExt...
   5497.2 ms  ✓ LuxLib → LuxLibCUDAExt
  1 dependency successfully precompiled in 6 seconds. 171 already precompiled.
Precompiling LuxLibcuDNNExt...
   5722.9 ms  ✓ LuxLib → LuxLibcuDNNExt
  1 dependency successfully precompiled in 6 seconds. 176 already precompiled.
Precompiling LuxMLUtilsExt...
   2177.0 ms  ✓ Lux → LuxMLUtilsExt
  1 dependency successfully precompiled in 2 seconds. 167 already precompiled.

Loading MNIST

julia
function loadmnist(batchsize, train_split)
    # Load MNIST: Only 1500 for demonstration purposes
    N = parse(Bool, get(ENV, "CI", "false")) ? 1500 : nothing
    dataset = MNIST(; split=:train)
    if N !== nothing
        imgs = dataset.features[:, :, 1:N]
        labels_raw = dataset.targets[1:N]
    else
        imgs = dataset.features
        labels_raw = dataset.targets
    end

    # Process images into (H,W,C,BS) batches
    x_data = Float32.(reshape(imgs, size(imgs, 1), size(imgs, 2), 1, size(imgs, 3)))
    y_data = onehotbatch(labels_raw, 0:9)
    (x_train, y_train), (x_test, y_test) = splitobs((x_data, y_data); at=train_split)

    return (
        # Use DataLoader to automatically minibatch and shuffle the data
        DataLoader(collect.((x_train, y_train)); batchsize, shuffle=true),
        # Don't shuffle the test data
        DataLoader(collect.((x_test, y_test)); batchsize, shuffle=false)
    )
end
loadmnist (generic function with 1 method)

Define the Neural ODE Layer

First we will use the @compact macro to define the Neural ODE Layer.

julia
function NeuralODECompact(
        model::Lux.AbstractLuxLayer; solver=Tsit5(), tspan=(0.0f0, 1.0f0), kwargs...)
    return @compact(; model, solver, tspan, kwargs...) do x, p
        dudt(u, p, t) = vec(model(reshape(u, size(x)), p))
        # Note the `p.model` here
        prob = ODEProblem(ODEFunction{false}(dudt), vec(x), tspan, p.model)
        @return solve(prob, solver; kwargs...)
    end
end
NeuralODECompact (generic function with 1 method)

We recommend using the compact macro for creating custom layers. The below implementation exists mostly for historical reasons when @compact was not part of the stable API. Also, it helps users understand how the layer interface of Lux works.

The NeuralODE is a ContainerLayer, which stores a model. The parameters and states of the NeuralODE are same as those of the underlying model.

julia
struct NeuralODE{M <: Lux.AbstractLuxLayer, So, T, K} <: Lux.AbstractLuxWrapperLayer{:model}
    model::M
    solver::So
    tspan::T
    kwargs::K
end

function NeuralODE(
        model::Lux.AbstractLuxLayer; solver=Tsit5(), tspan=(0.0f0, 1.0f0), kwargs...)
    return NeuralODE(model, solver, tspan, kwargs)
end
Main.var"##230".NeuralODE

OrdinaryDiffEq.jl can deal with non-Vector Inputs! However, certain discrete sensitivities like ReverseDiffAdjoint can't handle non-Vector inputs. Hence, we need to convert the input and output of the ODE solver to a Vector.

julia
function (n::NeuralODE)(x, ps, st)
    function dudt(u, p, t)
        u_, st = n.model(reshape(u, size(x)), p, st)
        return vec(u_)
    end
    prob = ODEProblem{false}(ODEFunction{false}(dudt), vec(x), n.tspan, ps)
    return solve(prob, n.solver; n.kwargs...), st
end

@views diffeqsol_to_array(l::Int, x::ODESolution) = reshape(last(x.u), (l, :))
@views diffeqsol_to_array(l::Int, x::AbstractMatrix) = reshape(x[:, end], (l, :))
diffeqsol_to_array (generic function with 2 methods)

Create and Initialize the Neural ODE Layer

julia
function create_model(model_fn=NeuralODE; dev=gpu_device(), use_named_tuple::Bool=false,
        sensealg=InterpolatingAdjoint(; autojacvec=ZygoteVJP()))
    # Construct the Neural ODE Model
    model = Chain(FlattenLayer(),
        Dense(784 => 20, tanh),
        model_fn(
            Chain(Dense(20 => 10, tanh), Dense(10 => 10, tanh), Dense(10 => 20, tanh));
            save_everystep=false, reltol=1.0f-3,
            abstol=1.0f-3, save_start=false, sensealg),
        Base.Fix1(diffeqsol_to_array, 20),
        Dense(20 => 10))

    rng = Random.default_rng()
    Random.seed!(rng, 0)

    ps, st = Lux.setup(rng, model)
    ps = (use_named_tuple ? ps : ComponentArray(ps)) |> dev
    st = st |> dev

    return model, ps, st
end
create_model (generic function with 2 methods)

Define Utility Functions

julia
const logitcrossentropy = CrossEntropyLoss(; logits=Val(true))

function accuracy(model, ps, st, dataloader)
    total_correct, total = 0, 0
    st = Lux.testmode(st)
    for (x, y) in dataloader
        target_class = onecold(y)
        predicted_class = onecold(first(model(x, ps, st)))
        total_correct += sum(target_class .== predicted_class)
        total += length(target_class)
    end
    return total_correct / total
end
accuracy (generic function with 1 method)

Training

julia
function train(model_function; cpu::Bool=false, kwargs...)
    dev = cpu ? cpu_device() : gpu_device()
    model, ps, st = create_model(model_function; dev, kwargs...)

    # Training
    train_dataloader, test_dataloader = loadmnist(128, 0.9) |> dev

    tstate = Training.TrainState(model, ps, st, Adam(0.001f0))

    ### Lets train the model
    nepochs = 9
    for epoch in 1:nepochs
        stime = time()
        for (x, y) in train_dataloader
            _, _, _, tstate = Training.single_train_step!(
                AutoZygote(), logitcrossentropy, (x, y), tstate)
        end
        ttime = time() - stime

        tr_acc = accuracy(model, tstate.parameters, tstate.states, train_dataloader) * 100
        te_acc = accuracy(model, tstate.parameters, tstate.states, test_dataloader) * 100
        @printf "[%d/%d]\tTime %.4fs\tTraining Accuracy: %.5f%%\tTest \
                 Accuracy: %.5f%%\n" epoch nepochs ttime tr_acc te_acc
    end
end

train(NeuralODECompact)
[1/9]	Time 151.1722s	Training Accuracy: 37.48148%	Test Accuracy: 40.00000%
[2/9]	Time 0.7037s	Training Accuracy: 58.22222%	Test Accuracy: 57.33333%
[3/9]	Time 0.6089s	Training Accuracy: 67.85185%	Test Accuracy: 70.66667%
[4/9]	Time 0.7429s	Training Accuracy: 74.29630%	Test Accuracy: 74.66667%
[5/9]	Time 0.5916s	Training Accuracy: 76.29630%	Test Accuracy: 76.00000%
[6/9]	Time 0.7886s	Training Accuracy: 78.74074%	Test Accuracy: 80.00000%
[7/9]	Time 0.6049s	Training Accuracy: 82.22222%	Test Accuracy: 81.33333%
[8/9]	Time 0.8125s	Training Accuracy: 83.62963%	Test Accuracy: 83.33333%
[9/9]	Time 0.6067s	Training Accuracy: 85.18519%	Test Accuracy: 82.66667%
julia
train(NeuralODE)
[1/9]	Time 35.2560s	Training Accuracy: 37.48148%	Test Accuracy: 40.00000%
[2/9]	Time 0.7573s	Training Accuracy: 57.18519%	Test Accuracy: 57.33333%
[3/9]	Time 0.6112s	Training Accuracy: 68.37037%	Test Accuracy: 68.00000%
[4/9]	Time 0.8587s	Training Accuracy: 73.77778%	Test Accuracy: 75.33333%
[5/9]	Time 0.6079s	Training Accuracy: 76.14815%	Test Accuracy: 77.33333%
[6/9]	Time 0.6015s	Training Accuracy: 79.48148%	Test Accuracy: 80.66667%
[7/9]	Time 0.8874s	Training Accuracy: 81.25926%	Test Accuracy: 80.66667%
[8/9]	Time 0.5916s	Training Accuracy: 83.40741%	Test Accuracy: 82.66667%
[9/9]	Time 0.5898s	Training Accuracy: 84.81481%	Test Accuracy: 82.00000%

We can also change the sensealg and train the model! GaussAdjoint allows you to use any arbitrary parameter structure and not just a flat vector (ComponentArray).

julia
train(NeuralODE; sensealg=GaussAdjoint(; autojacvec=ZygoteVJP()), use_named_tuple=true)
[1/9]	Time 43.8973s	Training Accuracy: 37.48148%	Test Accuracy: 40.00000%
[2/9]	Time 0.5867s	Training Accuracy: 58.44444%	Test Accuracy: 58.00000%
[3/9]	Time 0.7454s	Training Accuracy: 66.96296%	Test Accuracy: 68.00000%
[4/9]	Time 0.6012s	Training Accuracy: 72.44444%	Test Accuracy: 73.33333%
[5/9]	Time 0.7904s	Training Accuracy: 76.37037%	Test Accuracy: 76.00000%
[6/9]	Time 0.5663s	Training Accuracy: 78.81481%	Test Accuracy: 79.33333%
[7/9]	Time 0.5652s	Training Accuracy: 80.51852%	Test Accuracy: 81.33333%
[8/9]	Time 0.8136s	Training Accuracy: 82.74074%	Test Accuracy: 83.33333%
[9/9]	Time 0.5584s	Training Accuracy: 85.25926%	Test Accuracy: 82.66667%

But remember some AD backends like ReverseDiff is not GPU compatible. For a model this size, you will notice that training time is significantly lower for training on CPU than on GPU.

julia
train(NeuralODE; sensealg=InterpolatingAdjoint(; autojacvec=ReverseDiffVJP()), cpu=true)
[1/9]	Time 103.9525s	Training Accuracy: 37.48148%	Test Accuracy: 40.00000%
[2/9]	Time 9.7798s	Training Accuracy: 58.74074%	Test Accuracy: 56.66667%
[3/9]	Time 16.1451s	Training Accuracy: 69.92593%	Test Accuracy: 71.33333%
[4/9]	Time 10.2949s	Training Accuracy: 72.81481%	Test Accuracy: 74.00000%
[5/9]	Time 11.8060s	Training Accuracy: 76.37037%	Test Accuracy: 78.66667%
[6/9]	Time 7.8433s	Training Accuracy: 79.03704%	Test Accuracy: 80.66667%
[7/9]	Time 15.1969s	Training Accuracy: 81.62963%	Test Accuracy: 80.66667%
[8/9]	Time 9.1166s	Training Accuracy: 83.33333%	Test Accuracy: 80.00000%
[9/9]	Time 5.6797s	Training Accuracy: 85.40741%	Test Accuracy: 82.00000%

For completeness, let's also test out discrete sensitivities!

julia
train(NeuralODE; sensealg=ReverseDiffAdjoint(), cpu=true)
[1/9]	Time 53.1845s	Training Accuracy: 37.48148%	Test Accuracy: 40.00000%
[2/9]	Time 25.5102s	Training Accuracy: 58.66667%	Test Accuracy: 57.33333%
[3/9]	Time 23.5637s	Training Accuracy: 69.70370%	Test Accuracy: 71.33333%
[4/9]	Time 23.4192s	Training Accuracy: 72.74074%	Test Accuracy: 74.00000%
[5/9]	Time 24.0128s	Training Accuracy: 76.14815%	Test Accuracy: 78.66667%
[6/9]	Time 26.3280s	Training Accuracy: 79.03704%	Test Accuracy: 80.66667%
[7/9]	Time 22.9186s	Training Accuracy: 81.55556%	Test Accuracy: 80.66667%
[8/9]	Time 24.9598s	Training Accuracy: 83.40741%	Test Accuracy: 80.00000%
[9/9]	Time 22.7023s	Training Accuracy: 85.25926%	Test Accuracy: 81.33333%

Alternate Implementation using Stateful Layer

Starting v0.5.5, Lux provides a StatefulLuxLayer which can be used to avoid the Boxing of st. Using the @compact API avoids this problem entirely.

julia
struct StatefulNeuralODE{M <: Lux.AbstractLuxLayer, So, T, K} <:
       Lux.AbstractLuxWrapperLayer{:model}
    model::M
    solver::So
    tspan::T
    kwargs::K
end

function StatefulNeuralODE(
        model::Lux.AbstractLuxLayer; solver=Tsit5(), tspan=(0.0f0, 1.0f0), kwargs...)
    return StatefulNeuralODE(model, solver, tspan, kwargs)
end

function (n::StatefulNeuralODE)(x, ps, st)
    st_model = StatefulLuxLayer{true}(n.model, ps, st)
    dudt(u, p, t) = st_model(u, p)
    prob = ODEProblem{false}(ODEFunction{false}(dudt), x, n.tspan, ps)
    return solve(prob, n.solver; n.kwargs...), st_model.st
end

Train the new Stateful Neural ODE

julia
train(StatefulNeuralODE)
[1/9]	Time 39.3888s	Training Accuracy: 37.48148%	Test Accuracy: 40.00000%
[2/9]	Time 0.5756s	Training Accuracy: 58.22222%	Test Accuracy: 55.33333%
[3/9]	Time 0.6125s	Training Accuracy: 68.29630%	Test Accuracy: 68.66667%
[4/9]	Time 0.5795s	Training Accuracy: 73.11111%	Test Accuracy: 76.00000%
[5/9]	Time 0.5673s	Training Accuracy: 75.92593%	Test Accuracy: 76.66667%
[6/9]	Time 0.5770s	Training Accuracy: 78.96296%	Test Accuracy: 80.66667%
[7/9]	Time 0.8824s	Training Accuracy: 80.81481%	Test Accuracy: 81.33333%
[8/9]	Time 0.5617s	Training Accuracy: 83.25926%	Test Accuracy: 82.66667%
[9/9]	Time 0.5897s	Training Accuracy: 84.59259%	Test Accuracy: 82.00000%

We might not see a significant difference in the training time, but let us investigate the type stabilities of the layers.

Type Stability

julia
model, ps, st = create_model(NeuralODE)

model_stateful, ps_stateful, st_stateful = create_model(StatefulNeuralODE)

x = gpu_device()(ones(Float32, 28, 28, 1, 3));

NeuralODE is not type stable due to the boxing of st

julia
@code_warntype model(x, ps, st)
MethodInstance for (::Lux.Chain{@NamedTuple{layer_1::Lux.FlattenLayer{Nothing}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Main.var"##230".NeuralODE{Lux.Chain{@NamedTuple{layer_1::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}, OrdinaryDiffEqTsit5.Tsit5{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}, Tuple{Float32, Float32}, Base.Pairs{Symbol, Any, NTuple{5, Symbol}, @NamedTuple{save_everystep::Bool, reltol::Float32, abstol::Float32, save_start::Bool, sensealg::SciMLSensitivity.InterpolatingAdjoint{0, true, Val{:central}, SciMLSensitivity.ZygoteVJP}}}}, layer_4::Lux.WrappedFunction{Base.Fix1{typeof(Main.var"##230".diffeqsol_to_array), Int64}}, layer_5::Lux.Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing})(::CUDA.CuArray{Float32, 4, CUDA.DeviceMemory}, ::ComponentArrays.ComponentVector{Float32, CUDA.CuArray{Float32, 1, CUDA.DeviceMemory}, Tuple{ComponentArrays.Axis{(layer_1 = 1:0, layer_2 = ViewAxis(1:15700, Axis(weight = ViewAxis(1:15680, ShapedAxis((20, 784))), bias = 15681:15700)), layer_3 = ViewAxis(15701:16240, Axis(layer_1 = ViewAxis(1:210, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)), layer_2 = ViewAxis(211:320, Axis(weight = ViewAxis(1:100, ShapedAxis((10, 10))), bias = 101:110)), layer_3 = ViewAxis(321:540, Axis(weight = ViewAxis(1:200, ShapedAxis((20, 10))), bias = 201:220)))), layer_4 = 16241:16240, layer_5 = ViewAxis(16241:16450, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)))}}}, ::@NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{}}, layer_4::@NamedTuple{}, layer_5::@NamedTuple{}})
  from (c::Lux.Chain)(x, ps, st::NamedTuple) @ Lux /var/lib/buildkite-agent/builds/gpuci-9/julialang/lux-dot-jl/src/layers/containers.jl:480
Arguments
  c::Lux.Chain{@NamedTuple{layer_1::Lux.FlattenLayer{Nothing}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Main.var"##230".NeuralODE{Lux.Chain{@NamedTuple{layer_1::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}, OrdinaryDiffEqTsit5.Tsit5{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}, Tuple{Float32, Float32}, Base.Pairs{Symbol, Any, NTuple{5, Symbol}, @NamedTuple{save_everystep::Bool, reltol::Float32, abstol::Float32, save_start::Bool, sensealg::SciMLSensitivity.InterpolatingAdjoint{0, true, Val{:central}, SciMLSensitivity.ZygoteVJP}}}}, layer_4::Lux.WrappedFunction{Base.Fix1{typeof(Main.var"##230".diffeqsol_to_array), Int64}}, layer_5::Lux.Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}
  x::CUDA.CuArray{Float32, 4, CUDA.DeviceMemory}
  ps::ComponentArrays.ComponentVector{Float32, CUDA.CuArray{Float32, 1, CUDA.DeviceMemory}, Tuple{ComponentArrays.Axis{(layer_1 = 1:0, layer_2 = ViewAxis(1:15700, Axis(weight = ViewAxis(1:15680, ShapedAxis((20, 784))), bias = 15681:15700)), layer_3 = ViewAxis(15701:16240, Axis(layer_1 = ViewAxis(1:210, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)), layer_2 = ViewAxis(211:320, Axis(weight = ViewAxis(1:100, ShapedAxis((10, 10))), bias = 101:110)), layer_3 = ViewAxis(321:540, Axis(weight = ViewAxis(1:200, ShapedAxis((20, 10))), bias = 201:220)))), layer_4 = 16241:16240, layer_5 = ViewAxis(16241:16450, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)))}}}
  st::Core.Const((layer_1 = NamedTuple(), layer_2 = NamedTuple(), layer_3 = (layer_1 = NamedTuple(), layer_2 = NamedTuple(), layer_3 = NamedTuple()), layer_4 = NamedTuple(), layer_5 = NamedTuple()))
Body::TUPLE{CUDA.CUARRAY{FLOAT32, 2, CUDA.DEVICEMEMORY}, NAMEDTUPLE{(:LAYER_1, :LAYER_2, :LAYER_3, :LAYER_4, :LAYER_5), <:TUPLE{@NAMEDTUPLE{}, @NAMEDTUPLE{}, ANY, @NAMEDTUPLE{}, @NAMEDTUPLE{}}}}
1 ─ %1 = Lux.applychain::Core.Const(Lux.applychain)
│   %2 = Base.getproperty(c, :layers)::@NamedTuple{layer_1::Lux.FlattenLayer{Nothing}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Main.var"##230".NeuralODE{Lux.Chain{@NamedTuple{layer_1::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}, OrdinaryDiffEqTsit5.Tsit5{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}, Tuple{Float32, Float32}, Base.Pairs{Symbol, Any, NTuple{5, Symbol}, @NamedTuple{save_everystep::Bool, reltol::Float32, abstol::Float32, save_start::Bool, sensealg::SciMLSensitivity.InterpolatingAdjoint{0, true, Val{:central}, SciMLSensitivity.ZygoteVJP}}}}, layer_4::Lux.WrappedFunction{Base.Fix1{typeof(Main.var"##230".diffeqsol_to_array), Int64}}, layer_5::Lux.Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}
│   %3 = (%1)(%2, x, ps, st)::TUPLE{CUDA.CUARRAY{FLOAT32, 2, CUDA.DEVICEMEMORY}, NAMEDTUPLE{(:LAYER_1, :LAYER_2, :LAYER_3, :LAYER_4, :LAYER_5), <:TUPLE{@NAMEDTUPLE{}, @NAMEDTUPLE{}, ANY, @NAMEDTUPLE{}, @NAMEDTUPLE{}}}}
└──      return %3

We avoid the problem entirely by using StatefulNeuralODE

julia
@code_warntype model_stateful(x, ps_stateful, st_stateful)
MethodInstance for (::Lux.Chain{@NamedTuple{layer_1::Lux.FlattenLayer{Nothing}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Main.var"##230".StatefulNeuralODE{Lux.Chain{@NamedTuple{layer_1::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}, OrdinaryDiffEqTsit5.Tsit5{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}, Tuple{Float32, Float32}, Base.Pairs{Symbol, Any, NTuple{5, Symbol}, @NamedTuple{save_everystep::Bool, reltol::Float32, abstol::Float32, save_start::Bool, sensealg::SciMLSensitivity.InterpolatingAdjoint{0, true, Val{:central}, SciMLSensitivity.ZygoteVJP}}}}, layer_4::Lux.WrappedFunction{Base.Fix1{typeof(Main.var"##230".diffeqsol_to_array), Int64}}, layer_5::Lux.Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing})(::CUDA.CuArray{Float32, 4, CUDA.DeviceMemory}, ::ComponentArrays.ComponentVector{Float32, CUDA.CuArray{Float32, 1, CUDA.DeviceMemory}, Tuple{ComponentArrays.Axis{(layer_1 = 1:0, layer_2 = ViewAxis(1:15700, Axis(weight = ViewAxis(1:15680, ShapedAxis((20, 784))), bias = 15681:15700)), layer_3 = ViewAxis(15701:16240, Axis(layer_1 = ViewAxis(1:210, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)), layer_2 = ViewAxis(211:320, Axis(weight = ViewAxis(1:100, ShapedAxis((10, 10))), bias = 101:110)), layer_3 = ViewAxis(321:540, Axis(weight = ViewAxis(1:200, ShapedAxis((20, 10))), bias = 201:220)))), layer_4 = 16241:16240, layer_5 = ViewAxis(16241:16450, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)))}}}, ::@NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{}}, layer_4::@NamedTuple{}, layer_5::@NamedTuple{}})
  from (c::Lux.Chain)(x, ps, st::NamedTuple) @ Lux /var/lib/buildkite-agent/builds/gpuci-9/julialang/lux-dot-jl/src/layers/containers.jl:480
Arguments
  c::Lux.Chain{@NamedTuple{layer_1::Lux.FlattenLayer{Nothing}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Main.var"##230".StatefulNeuralODE{Lux.Chain{@NamedTuple{layer_1::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}, OrdinaryDiffEqTsit5.Tsit5{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}, Tuple{Float32, Float32}, Base.Pairs{Symbol, Any, NTuple{5, Symbol}, @NamedTuple{save_everystep::Bool, reltol::Float32, abstol::Float32, save_start::Bool, sensealg::SciMLSensitivity.InterpolatingAdjoint{0, true, Val{:central}, SciMLSensitivity.ZygoteVJP}}}}, layer_4::Lux.WrappedFunction{Base.Fix1{typeof(Main.var"##230".diffeqsol_to_array), Int64}}, layer_5::Lux.Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}
  x::CUDA.CuArray{Float32, 4, CUDA.DeviceMemory}
  ps::ComponentArrays.ComponentVector{Float32, CUDA.CuArray{Float32, 1, CUDA.DeviceMemory}, Tuple{ComponentArrays.Axis{(layer_1 = 1:0, layer_2 = ViewAxis(1:15700, Axis(weight = ViewAxis(1:15680, ShapedAxis((20, 784))), bias = 15681:15700)), layer_3 = ViewAxis(15701:16240, Axis(layer_1 = ViewAxis(1:210, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)), layer_2 = ViewAxis(211:320, Axis(weight = ViewAxis(1:100, ShapedAxis((10, 10))), bias = 101:110)), layer_3 = ViewAxis(321:540, Axis(weight = ViewAxis(1:200, ShapedAxis((20, 10))), bias = 201:220)))), layer_4 = 16241:16240, layer_5 = ViewAxis(16241:16450, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)))}}}
  st::Core.Const((layer_1 = NamedTuple(), layer_2 = NamedTuple(), layer_3 = (layer_1 = NamedTuple(), layer_2 = NamedTuple(), layer_3 = NamedTuple()), layer_4 = NamedTuple(), layer_5 = NamedTuple()))
Body::Tuple{CUDA.CuArray{Float32, 2, CUDA.DeviceMemory}, @NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{}}, layer_4::@NamedTuple{}, layer_5::@NamedTuple{}}}
1 ─ %1 = Lux.applychain::Core.Const(Lux.applychain)
│   %2 = Base.getproperty(c, :layers)::@NamedTuple{layer_1::Lux.FlattenLayer{Nothing}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Main.var"##230".StatefulNeuralODE{Lux.Chain{@NamedTuple{layer_1::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}, OrdinaryDiffEqTsit5.Tsit5{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}, Tuple{Float32, Float32}, Base.Pairs{Symbol, Any, NTuple{5, Symbol}, @NamedTuple{save_everystep::Bool, reltol::Float32, abstol::Float32, save_start::Bool, sensealg::SciMLSensitivity.InterpolatingAdjoint{0, true, Val{:central}, SciMLSensitivity.ZygoteVJP}}}}, layer_4::Lux.WrappedFunction{Base.Fix1{typeof(Main.var"##230".diffeqsol_to_array), Int64}}, layer_5::Lux.Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}
│   %3 = (%1)(%2, x, ps, st)::Tuple{CUDA.CuArray{Float32, 2, CUDA.DeviceMemory}, @NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{}}, layer_4::@NamedTuple{}, layer_5::@NamedTuple{}}}
└──      return %3

Note, that we still recommend using this layer internally and not exposing this as the default API to the users.

Finally checking the compact model

julia
model_compact, ps_compact, st_compact = create_model(NeuralODECompact)

@code_warntype model_compact(x, ps_compact, st_compact)
MethodInstance for (::Lux.Chain{@NamedTuple{layer_1::Lux.FlattenLayer{Nothing}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.CompactLuxLayer{:₋₋₋no_special_dispatch₋₋₋, Main.var"##230".var"#2#3", Nothing, @NamedTuple{model::Lux.Chain{@NamedTuple{layer_1::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}}, Lux.CompactMacroImpl.ValueStorage{@NamedTuple{}, @NamedTuple{solver::Returns{OrdinaryDiffEqTsit5.Tsit5{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}}, tspan::Returns{Tuple{Float32, Float32}}}}, Tuple{Tuple{Symbol}, Tuple{Base.Pairs{Symbol, Any, NTuple{5, Symbol}, @NamedTuple{save_everystep::Bool, reltol::Float32, abstol::Float32, save_start::Bool, sensealg::SciMLSensitivity.InterpolatingAdjoint{0, true, Val{:central}, SciMLSensitivity.ZygoteVJP}}}}}}, layer_4::Lux.WrappedFunction{Base.Fix1{typeof(Main.var"##230".diffeqsol_to_array), Int64}}, layer_5::Lux.Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing})(::CUDA.CuArray{Float32, 4, CUDA.DeviceMemory}, ::ComponentArrays.ComponentVector{Float32, CUDA.CuArray{Float32, 1, CUDA.DeviceMemory}, Tuple{ComponentArrays.Axis{(layer_1 = 1:0, layer_2 = ViewAxis(1:15700, Axis(weight = ViewAxis(1:15680, ShapedAxis((20, 784))), bias = 15681:15700)), layer_3 = ViewAxis(15701:16240, Axis(model = ViewAxis(1:540, Axis(layer_1 = ViewAxis(1:210, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)), layer_2 = ViewAxis(211:320, Axis(weight = ViewAxis(1:100, ShapedAxis((10, 10))), bias = 101:110)), layer_3 = ViewAxis(321:540, Axis(weight = ViewAxis(1:200, ShapedAxis((20, 10))), bias = 201:220)))),)), layer_4 = 16241:16240, layer_5 = ViewAxis(16241:16450, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)))}}}, ::@NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{model::@NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{}}, solver::OrdinaryDiffEqTsit5.Tsit5{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}, tspan::Tuple{Float32, Float32}, ₋₋₋kwargs₋₋₋::Lux.CompactMacroImpl.KwargsStorage{@NamedTuple{kwargs::Base.Pairs{Symbol, Any, NTuple{5, Symbol}, @NamedTuple{save_everystep::Bool, reltol::Float32, abstol::Float32, save_start::Bool, sensealg::SciMLSensitivity.InterpolatingAdjoint{0, true, Val{:central}, SciMLSensitivity.ZygoteVJP}}}}}}, layer_4::@NamedTuple{}, layer_5::@NamedTuple{}})
  from (c::Lux.Chain)(x, ps, st::NamedTuple) @ Lux /var/lib/buildkite-agent/builds/gpuci-9/julialang/lux-dot-jl/src/layers/containers.jl:480
Arguments
  c::Lux.Chain{@NamedTuple{layer_1::Lux.FlattenLayer{Nothing}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.CompactLuxLayer{:₋₋₋no_special_dispatch₋₋₋, Main.var"##230".var"#2#3", Nothing, @NamedTuple{model::Lux.Chain{@NamedTuple{layer_1::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}}, Lux.CompactMacroImpl.ValueStorage{@NamedTuple{}, @NamedTuple{solver::Returns{OrdinaryDiffEqTsit5.Tsit5{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}}, tspan::Returns{Tuple{Float32, Float32}}}}, Tuple{Tuple{Symbol}, Tuple{Base.Pairs{Symbol, Any, NTuple{5, Symbol}, @NamedTuple{save_everystep::Bool, reltol::Float32, abstol::Float32, save_start::Bool, sensealg::SciMLSensitivity.InterpolatingAdjoint{0, true, Val{:central}, SciMLSensitivity.ZygoteVJP}}}}}}, layer_4::Lux.WrappedFunction{Base.Fix1{typeof(Main.var"##230".diffeqsol_to_array), Int64}}, layer_5::Lux.Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}
  x::CUDA.CuArray{Float32, 4, CUDA.DeviceMemory}
  ps::ComponentArrays.ComponentVector{Float32, CUDA.CuArray{Float32, 1, CUDA.DeviceMemory}, Tuple{ComponentArrays.Axis{(layer_1 = 1:0, layer_2 = ViewAxis(1:15700, Axis(weight = ViewAxis(1:15680, ShapedAxis((20, 784))), bias = 15681:15700)), layer_3 = ViewAxis(15701:16240, Axis(model = ViewAxis(1:540, Axis(layer_1 = ViewAxis(1:210, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)), layer_2 = ViewAxis(211:320, Axis(weight = ViewAxis(1:100, ShapedAxis((10, 10))), bias = 101:110)), layer_3 = ViewAxis(321:540, Axis(weight = ViewAxis(1:200, ShapedAxis((20, 10))), bias = 201:220)))),)), layer_4 = 16241:16240, layer_5 = ViewAxis(16241:16450, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)))}}}
  st::@NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{model::@NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{}}, solver::OrdinaryDiffEqTsit5.Tsit5{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}, tspan::Tuple{Float32, Float32}, ₋₋₋kwargs₋₋₋::Lux.CompactMacroImpl.KwargsStorage{@NamedTuple{kwargs::Base.Pairs{Symbol, Any, NTuple{5, Symbol}, @NamedTuple{save_everystep::Bool, reltol::Float32, abstol::Float32, save_start::Bool, sensealg::SciMLSensitivity.InterpolatingAdjoint{0, true, Val{:central}, SciMLSensitivity.ZygoteVJP}}}}}}, layer_4::@NamedTuple{}, layer_5::@NamedTuple{}}
Body::Tuple{CUDA.CuArray{Float32, 2, CUDA.DeviceMemory}, @NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{model::@NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{}}, solver::OrdinaryDiffEqTsit5.Tsit5{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}, tspan::Tuple{Float32, Float32}, ₋₋₋kwargs₋₋₋::Lux.CompactMacroImpl.KwargsStorage{@NamedTuple{kwargs::Base.Pairs{Symbol, Any, NTuple{5, Symbol}, @NamedTuple{save_everystep::Bool, reltol::Float32, abstol::Float32, save_start::Bool, sensealg::SciMLSensitivity.InterpolatingAdjoint{0, true, Val{:central}, SciMLSensitivity.ZygoteVJP}}}}}}, layer_4::@NamedTuple{}, layer_5::@NamedTuple{}}}
1 ─ %1 = Lux.applychain::Core.Const(Lux.applychain)
│   %2 = Base.getproperty(c, :layers)::@NamedTuple{layer_1::Lux.FlattenLayer{Nothing}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.CompactLuxLayer{:₋₋₋no_special_dispatch₋₋₋, Main.var"##230".var"#2#3", Nothing, @NamedTuple{model::Lux.Chain{@NamedTuple{layer_1::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}}, Lux.CompactMacroImpl.ValueStorage{@NamedTuple{}, @NamedTuple{solver::Returns{OrdinaryDiffEqTsit5.Tsit5{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}}, tspan::Returns{Tuple{Float32, Float32}}}}, Tuple{Tuple{Symbol}, Tuple{Base.Pairs{Symbol, Any, NTuple{5, Symbol}, @NamedTuple{save_everystep::Bool, reltol::Float32, abstol::Float32, save_start::Bool, sensealg::SciMLSensitivity.InterpolatingAdjoint{0, true, Val{:central}, SciMLSensitivity.ZygoteVJP}}}}}}, layer_4::Lux.WrappedFunction{Base.Fix1{typeof(Main.var"##230".diffeqsol_to_array), Int64}}, layer_5::Lux.Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}
│   %3 = (%1)(%2, x, ps, st)::Tuple{CUDA.CuArray{Float32, 2, CUDA.DeviceMemory}, @NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{model::@NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{}}, solver::OrdinaryDiffEqTsit5.Tsit5{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}, tspan::Tuple{Float32, Float32}, ₋₋₋kwargs₋₋₋::Lux.CompactMacroImpl.KwargsStorage{@NamedTuple{kwargs::Base.Pairs{Symbol, Any, NTuple{5, Symbol}, @NamedTuple{save_everystep::Bool, reltol::Float32, abstol::Float32, save_start::Bool, sensealg::SciMLSensitivity.InterpolatingAdjoint{0, true, Val{:central}, SciMLSensitivity.ZygoteVJP}}}}}}, layer_4::@NamedTuple{}, layer_5::@NamedTuple{}}}
└──      return %3

Appendix

julia
using InteractiveUtils
InteractiveUtils.versioninfo()

if @isdefined(MLDataDevices)
    if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
        println()
        CUDA.versioninfo()
    end

    if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
        println()
        AMDGPU.versioninfo()
    end
end
Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 48 × AMD EPYC 7402 24-Core Processor
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver2)
Threads: 48 default, 0 interactive, 24 GC (on 2 virtual cores)
Environment:
  JULIA_CPU_THREADS = 2
  JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
  LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
  JULIA_PKG_SERVER = 
  JULIA_NUM_THREADS = 48
  JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
  JULIA_PKG_PRECOMPILE_AUTO = 0
  JULIA_DEBUG = Literate

CUDA runtime 12.6, artifact installation
CUDA driver 12.6
NVIDIA driver 560.35.3

CUDA libraries: 
- CUBLAS: 12.6.4
- CURAND: 10.3.7
- CUFFT: 11.3.0
- CUSOLVER: 11.7.1
- CUSPARSE: 12.5.4
- CUPTI: 2024.3.2 (API 24.0.0)
- NVML: 12.0.0+560.35.3

Julia packages: 
- CUDA: 5.6.1
- CUDA_Driver_jll: 0.10.4+0
- CUDA_Runtime_jll: 0.15.5+0

Toolchain:
- Julia: 1.11.3
- LLVM: 16.0.6

Environment:
- JULIA_CUDA_HARD_MEMORY_LIMIT: 100%

1 device:
  0: NVIDIA A100-PCIE-40GB MIG 1g.5gb (sm_80, 4.014 GiB / 4.750 GiB available)

This page was generated using Literate.jl.