MNIST Classification with SimpleChains
SimpleChains.jl is an excellent framework for training small neural networks. In this tutorial we will demonstrate how to use the same API as Lux.jl to train a model using SimpleChains.jl. We will use the tutorial from SimpleChains.jl as a reference.
Package Imports
using Lux, MLUtils, Optimisers, Zygote, OneHotArrays, Random, Statistics, Printf, Reactant
using MLDatasets: MNIST
using SimpleChains: SimpleChains
Reactant.set_default_backend("cpu")
2025-03-07 23:39:14.847448: I external/xla/xla/service/service.cc:152] XLA service 0x82eedd0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2025-03-07 23:39:14.847818: I external/xla/xla/service/service.cc:160] StreamExecutor device (0): NVIDIA A100-PCIE-40GB MIG 1g.5gb, Compute Capability 8.0
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1741390754.848694 3638128 se_gpu_pjrt_client.cc:951] Using BFC allocator.
I0000 00:00:1741390754.848770 3638128 gpu_helpers.cc:136] XLA backend allocating 3825205248 bytes on device 0 for BFCAllocator.
I0000 00:00:1741390754.848812 3638128 gpu_helpers.cc:177] XLA backend will use up to 1275068416 bytes on device 0 for CollectiveBFCAllocator.
I0000 00:00:1741390754.861566 3638128 cuda_dnn.cc:529] Loaded cuDNN version 90400
Loading MNIST
function loadmnist(batchsize, train_split)
# Load MNIST
N = parse(Bool, get(ENV, "CI", "false")) ? 1500 : nothing
dataset = MNIST(; split = :train)
if N !== nothing
imgs = dataset.features[:, :, 1:N]
labels_raw = dataset.targets[1:N]
else
imgs = dataset.features
labels_raw = dataset.targets
end
# Process images into (H, W, C, BS) batches
x_data = Float32.(reshape(imgs, size(imgs, 1), size(imgs, 2), 1, size(imgs, 3)))
y_data = onehotbatch(labels_raw, 0:9)
(x_train, y_train), (x_test, y_test) = splitobs((x_data, y_data); at = train_split)
return (
# Use DataLoader to automatically minibatch and shuffle the data
DataLoader(collect.((x_train, y_train)); batchsize, shuffle = true, partial = false),
# Don't shuffle the test data
DataLoader(collect.((x_test, y_test)); batchsize, shuffle = false, partial = false),
)
end
loadmnist (generic function with 1 method)
Define the Model
lux_model = Chain(
Conv((5, 5), 1 => 6, relu),
MaxPool((2, 2)),
Conv((5, 5), 6 => 16, relu),
MaxPool((2, 2)),
FlattenLayer(3),
Chain(
Dense(256 => 128, relu),
Dense(128 => 84, relu),
Dense(84 => 10)
)
)
Chain(
layer_1 = Conv((5, 5), 1 => 6, relu), # 156 parameters
layer_2 = MaxPool((2, 2)),
layer_3 = Conv((5, 5), 6 => 16, relu), # 2_416 parameters
layer_4 = MaxPool((2, 2)),
layer_5 = Lux.FlattenLayer{Static.StaticInt{3}}(static(3)),
layer_6 = Chain(
layer_1 = Dense(256 => 128, relu), # 32_896 parameters
layer_2 = Dense(128 => 84, relu), # 10_836 parameters
layer_3 = Dense(84 => 10), # 850 parameters
),
) # Total: 47_154 parameters,
# plus 0 states.
We now need to convert the lux_model to SimpleChains.jl. We need to do this by defining the ToSimpleChainsAdaptor
and providing the input dimensions.
adaptor = ToSimpleChainsAdaptor((28, 28, 1))
simple_chains_model = adaptor(lux_model)
SimpleChainsLayer(
Chain(
layer_1 = Conv((5, 5), 1 => 6, relu), # 156 parameters
layer_2 = MaxPool((2, 2)),
layer_3 = Conv((5, 5), 6 => 16, relu), # 2_416 parameters
layer_4 = MaxPool((2, 2)),
layer_5 = Lux.FlattenLayer{Static.StaticInt{3}}(static(3)),
layer_6 = Chain(
layer_1 = Dense(256 => 128, relu), # 32_896 parameters
layer_2 = Dense(128 => 84, relu), # 10_836 parameters
layer_3 = Dense(84 => 10), # 850 parameters
),
),
) # Total: 47_154 parameters,
# plus 0 states.
Helper Functions
const lossfn = CrossEntropyLoss(; logits = Val(true))
function accuracy(model, ps, st, dataloader)
total_correct, total = 0, 0
st = Lux.testmode(st)
for (x, y) in dataloader
target_class = onecold(y)
predicted_class = onecold(Array(first(model(x, ps, st))))
total_correct += sum(target_class .== predicted_class)
total += length(target_class)
end
return total_correct / total
end
accuracy (generic function with 1 method)
Define the Training Loop
function train(model, dev = cpu_device(); rng = Random.default_rng(), kwargs...)
train_dataloader, test_dataloader = loadmnist(128, 0.9) |> dev
ps, st = Lux.setup(rng, model) |> dev
vjp = dev isa ReactantDevice ? AutoEnzyme() : AutoZygote()
train_state = Training.TrainState(model, ps, st, Adam(3.0f-4))
if dev isa ReactantDevice
x_ra = first(test_dataloader)[1]
model_compiled = @compile model(x_ra, ps, Lux.testmode(st))
else
model_compiled = model
end
### Lets train the model
nepochs = 10
tr_acc, te_acc = 0.0, 0.0
for epoch in 1:nepochs
stime = time()
for (x, y) in train_dataloader
_, _, _, train_state = Training.single_train_step!(
vjp, lossfn, (x, y), train_state
)
end
ttime = time() - stime
tr_acc = accuracy(
model_compiled, train_state.parameters, train_state.states, train_dataloader
) *
100
te_acc = accuracy(
model_compiled, train_state.parameters, train_state.states, test_dataloader
) *
100
@printf "[%2d/%2d] \t Time %.2fs \t Training Accuracy: %.2f%% \t Test Accuracy: \
%.2f%%\n" epoch nepochs ttime tr_acc te_acc
end
return tr_acc, te_acc
end
train (generic function with 2 methods)
Finally Training the Model
First we will train the Lux model
tr_acc, te_acc = train(lux_model, reactant_device())
[ 1/10] Time 459.94s Training Accuracy: 8.91% Test Accuracy: 8.59%
[ 2/10] Time 0.39s Training Accuracy: 23.83% Test Accuracy: 18.75%
[ 3/10] Time 0.37s Training Accuracy: 43.67% Test Accuracy: 35.94%
[ 4/10] Time 0.37s Training Accuracy: 60.16% Test Accuracy: 55.47%
[ 5/10] Time 0.38s Training Accuracy: 68.75% Test Accuracy: 59.38%
[ 6/10] Time 0.40s Training Accuracy: 74.53% Test Accuracy: 65.62%
[ 7/10] Time 0.43s Training Accuracy: 79.22% Test Accuracy: 68.75%
[ 8/10] Time 0.41s Training Accuracy: 82.58% Test Accuracy: 71.88%
[ 9/10] Time 0.42s Training Accuracy: 85.16% Test Accuracy: 73.44%
[10/10] Time 0.38s Training Accuracy: 86.25% Test Accuracy: 77.34%
Now we will train the SimpleChains model
tr_acc, te_acc = train(simple_chains_model)
[ 1/10] Time 890.72s Training Accuracy: 26.80% Test Accuracy: 22.66%
[ 2/10] Time 12.24s Training Accuracy: 44.38% Test Accuracy: 37.50%
[ 3/10] Time 12.31s Training Accuracy: 52.42% Test Accuracy: 43.75%
[ 4/10] Time 12.29s Training Accuracy: 60.31% Test Accuracy: 53.12%
[ 5/10] Time 12.22s Training Accuracy: 67.50% Test Accuracy: 63.28%
[ 6/10] Time 12.22s Training Accuracy: 73.12% Test Accuracy: 67.19%
[ 7/10] Time 12.20s Training Accuracy: 76.64% Test Accuracy: 75.00%
[ 8/10] Time 12.25s Training Accuracy: 80.16% Test Accuracy: 71.88%
[ 9/10] Time 12.24s Training Accuracy: 82.11% Test Accuracy: 78.91%
[10/10] Time 12.26s Training Accuracy: 82.42% Test Accuracy: 78.91%
On my local machine we see a 3-4x speedup when using SimpleChains.jl. The conditions of the server this documentation is being built on is not ideal for CPU benchmarking hence, the speedup may not be as significant and even there might be regressions.
Appendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(MLDataDevices)
if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
println()
AMDGPU.versioninfo()
end
end
Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 48 × AMD EPYC 7402 24-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver2)
Threads: 48 default, 0 interactive, 24 GC (on 2 virtual cores)
Environment:
JULIA_CPU_THREADS = 2
JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
JULIA_PKG_SERVER =
JULIA_NUM_THREADS = 48
JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0
JULIA_DEBUG = Literate
This page was generated using Literate.jl.