Skip to content

Training a Simple LSTM

In this tutorial we will go over using a recurrent neural network to classify clockwise and anticlockwise spirals. By the end of this tutorial you will be able to:

  1. Create custom Lux models.

  2. Become familiar with the Lux recurrent neural network API.

  3. Training using Optimisers.jl and Zygote.jl.

Package Imports

Note: If you wish to use AutoZygote() for automatic differentiation, add Zygote to your project dependencies and include using Zygote.

julia
using ADTypes, Lux, JLD2, MLUtils, Optimisers, Printf, Reactant, Random

Dataset

We will use MLUtils to generate 500 (noisy) clockwise and 500 (noisy) anticlockwise spirals. Using this data we will create a MLUtils.DataLoader. Our dataloader will give us sequences of size 2 × seq_len × batch_size and we need to predict a binary value whether the sequence is clockwise or anticlockwise.

julia
function create_dataset(; dataset_size=1000, sequence_length=50)
    # Create the spirals
    data = [MLUtils.Datasets.make_spiral(sequence_length) for _ in 1:dataset_size]
    # Get the labels
    labels = vcat(repeat([0.0f0], dataset_size ÷ 2), repeat([1.0f0], dataset_size ÷ 2))
    clockwise_spirals = [
        reshape(d[1][:, 1:sequence_length], :, sequence_length, 1) for
        d in data[1:(dataset_size ÷ 2)]
    ]
    anticlockwise_spirals = [
        reshape(d[1][:, (sequence_length + 1):end], :, sequence_length, 1) for
        d in data[((dataset_size ÷ 2) + 1):end]
    ]
    x_data = Float32.(cat(clockwise_spirals..., anticlockwise_spirals...; dims=3))
    return x_data, labels
end

function get_dataloaders(; dataset_size=1000, sequence_length=50)
    x_data, labels = create_dataset(; dataset_size, sequence_length)
    # Split the dataset
    (x_train, y_train), (x_val, y_val) = splitobs((x_data, labels); at=0.8, shuffle=true)
    # Create DataLoaders
    return (
        # Use DataLoader to automatically minibatch and shuffle the data
        DataLoader(
            collect.((x_train, y_train)); batchsize=128, shuffle=true, partial=false
        ),
        # Don't shuffle the validation data
        DataLoader(collect.((x_val, y_val)); batchsize=128, shuffle=false, partial=false),
    )
end

Creating a Classifier

We will be extending the Lux.AbstractLuxContainerLayer type for our custom model since it will contain a LSTM block and a classifier head.

We pass the field names lstm_cell and classifier to the type to ensure that the parameters and states are automatically populated and we don't have to define Lux.initialparameters and Lux.initialstates.

To understand more about container layers, please look at Container Layer.

julia
struct SpiralClassifier{L,C} <: AbstractLuxContainerLayer{(:lstm_cell, :classifier)}
    lstm_cell::L
    classifier::C
end

We won't define the model from scratch but rather use the Lux.LSTMCell and Lux.Dense.

julia
function SpiralClassifier(in_dims, hidden_dims, out_dims)
    return SpiralClassifier(
        LSTMCell(in_dims => hidden_dims), Dense(hidden_dims => out_dims, sigmoid)
    )
end

We can use default Lux blocks – Recurrence(LSTMCell(in_dims => hidden_dims) – instead of defining the following. But let's still do it for the sake of it.

Now we need to define the behavior of the Classifier when it is invoked.

julia
function (s::SpiralClassifier)(
    x::AbstractArray{T,3}, ps::NamedTuple, st::NamedTuple
) where {T}
    # First we will have to run the sequence through the LSTM Cell
    # The first call to LSTM Cell will create the initial hidden state
    # See that the parameters and states are automatically populated into a field called
    # `lstm_cell` We use `eachslice` to get the elements in the sequence without copying,
    # and `Iterators.peel` to split out the first element for LSTM initialization.
    x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
    (y, carry), st_lstm = s.lstm_cell(x_init, ps.lstm_cell, st.lstm_cell)
    # Now that we have the hidden state and memory in `carry` we will pass the input and
    # `carry` jointly
    for x in x_rest
        (y, carry), st_lstm = s.lstm_cell((x, carry), ps.lstm_cell, st_lstm)
    end
    # After running through the sequence we will pass the output through the classifier
    y, st_classifier = s.classifier(y, ps.classifier, st.classifier)
    # Finally remember to create the updated state
    st = merge(st, (classifier=st_classifier, lstm_cell=st_lstm))
    return vec(y), st
end

Using the @compact API

We can also define the model using the Lux.@compact API, which is a more concise way of defining models. This macro automatically handles the boilerplate code for you and as such we recommend this way of defining custom layers

julia
function SpiralClassifierCompact(in_dims, hidden_dims, out_dims)
    lstm_cell = LSTMCell(in_dims => hidden_dims)
    classifier = Dense(hidden_dims => out_dims, sigmoid)
    return @compact(; lstm_cell, classifier) do x::AbstractArray{T,3} where {T}
        x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
        y, carry = lstm_cell(x_init)
        for x in x_rest
            y, carry = lstm_cell((x, carry))
        end
        @return vec(classifier(y))
    end
end

Defining Accuracy, Loss and Optimiser

Now let's define the binary cross-entropy loss. Typically it is recommended to use logitbinarycrossentropy since it is more numerically stable, but for the sake of simplicity we will use binarycrossentropy.

julia
const lossfn = BinaryCrossEntropyLoss()

function compute_loss(model, ps, st, (x, y))
    ŷ, st_ = model(x, ps, st)
    loss = lossfn(ŷ, y)
    return loss, st_, (; y_pred=ŷ)
end

matches(y_pred, y_true) = sum((y_pred .> 0.5f0) .== y_true)
accuracy(y_pred, y_true) = matches(y_pred, y_true) / length(y_pred)

Training the Model

julia
function main(model_type)
    dev = reactant_device()
    cdev = cpu_device()

    # Get the dataloaders
    train_loader, val_loader = dev(get_dataloaders())

    # Create the model
    model = model_type(2, 8, 1)
    ps, st = dev(Lux.setup(Random.default_rng(), model))

    train_state = Training.TrainState(model, ps, st, Adam(0.01f0))
    model_compiled = if dev isa ReactantDevice
        Reactant.with_config(;
            dot_general_precision=PrecisionConfig.HIGH,
            convolution_precision=PrecisionConfig.HIGH,
        ) do
            @compile model(first(train_loader)[1], ps, Lux.testmode(st))
        end
    else
        model
    end
    ad = dev isa ReactantDevice ? AutoEnzyme() : AutoZygote()

    for epoch in 1:25
        # Train the model
        total_loss = 0.0f0
        total_samples = 0
        for (x, y) in train_loader
            (_, loss, _, train_state) = Training.single_train_step!(
                ad, lossfn, (x, y), train_state
            )
            total_loss += loss * length(y)
            total_samples += length(y)
        end
        @printf("Epoch [%3d]: Loss %4.5f\n", epoch, total_loss / total_samples)

        # Validate the model
        total_acc = 0.0f0
        total_loss = 0.0f0
        total_samples = 0

        st_ = Lux.testmode(train_state.states)
        for (x, y) in val_loader
            ŷ, st_ = model_compiled(x, train_state.parameters, st_)
            ŷ, y = cdev(ŷ), cdev(y)
            total_acc += accuracy(ŷ, y) * length(y)
            total_loss += lossfn(ŷ, y) * length(y)
            total_samples += length(y)
        end

        @printf(
            "Validation:\tLoss %4.5f\tAccuracy %4.5f\n",
            total_loss / total_samples,
            total_acc / total_samples
        )
    end

    return cpu_device()((train_state.parameters, train_state.states))
end

ps_trained, st_trained = main(SpiralClassifier)
┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore /var/lib/buildkite-agent/builds/gpuci-11/julialang/lux-dot-jl/lib/LuxCore/src/LuxCore.jl:18
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1760386061.163623 2839317 service.cc:158] XLA service 0x26cd7f00 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
I0000 00:00:1760386061.163701 2839317 service.cc:166]   StreamExecutor device (0): NVIDIA A100-PCIE-40GB MIG 1g.5gb, Compute Capability 8.0
I0000 00:00:1760386061.165367 2839317 se_gpu_pjrt_client.cc:1339] Using BFC allocator.
I0000 00:00:1760386061.165446 2839317 gpu_helpers.cc:136] XLA backend allocating 3825205248 bytes on device 0 for BFCAllocator.
I0000 00:00:1760386061.165808 2839317 gpu_helpers.cc:177] XLA backend will use up to 1275068416 bytes on device 0 for CollectiveBFCAllocator.
I0000 00:00:1760386061.178054 2839317 cuda_dnn.cc:463] Loaded cuDNN version 91200
Epoch [  1]: Loss 0.85838
Validation:	Loss 0.73790	Accuracy 0.51562
Epoch [  2]: Loss 0.68647
Validation:	Loss 0.61547	Accuracy 1.00000
Epoch [  3]: Loss 0.58297
Validation:	Loss 0.54502	Accuracy 1.00000
Epoch [  4]: Loss 0.51585
Validation:	Loss 0.48089	Accuracy 1.00000
Epoch [  5]: Loss 0.44780
Validation:	Loss 0.40695	Accuracy 1.00000
Epoch [  6]: Loss 0.37044
Validation:	Loss 0.32565	Accuracy 1.00000
Epoch [  7]: Loss 0.29146
Validation:	Loss 0.24836	Accuracy 1.00000
Epoch [  8]: Loss 0.21836
Validation:	Loss 0.18084	Accuracy 1.00000
Epoch [  9]: Loss 0.15706
Validation:	Loss 0.12834	Accuracy 1.00000
Epoch [ 10]: Loss 0.11063
Validation:	Loss 0.08919	Accuracy 1.00000
Epoch [ 11]: Loss 0.07733
Validation:	Loss 0.06243	Accuracy 1.00000
Epoch [ 12]: Loss 0.05517
Validation:	Loss 0.04595	Accuracy 1.00000
Epoch [ 13]: Loss 0.04170
Validation:	Loss 0.03599	Accuracy 1.00000
Epoch [ 14]: Loss 0.03331
Validation:	Loss 0.02943	Accuracy 1.00000
Epoch [ 15]: Loss 0.02766
Validation:	Loss 0.02490	Accuracy 1.00000
Epoch [ 16]: Loss 0.02371
Validation:	Loss 0.02156	Accuracy 1.00000
Epoch [ 17]: Loss 0.02068
Validation:	Loss 0.01894	Accuracy 1.00000
Epoch [ 18]: Loss 0.01825
Validation:	Loss 0.01683	Accuracy 1.00000
Epoch [ 19]: Loss 0.01621
Validation:	Loss 0.01505	Accuracy 1.00000
Epoch [ 20]: Loss 0.01453
Validation:	Loss 0.01355	Accuracy 1.00000
Epoch [ 21]: Loss 0.01319
Validation:	Loss 0.01234	Accuracy 1.00000
Epoch [ 22]: Loss 0.01203
Validation:	Loss 0.01135	Accuracy 1.00000
Epoch [ 23]: Loss 0.01111
Validation:	Loss 0.01053	Accuracy 1.00000
Epoch [ 24]: Loss 0.01029
Validation:	Loss 0.00981	Accuracy 1.00000
Epoch [ 25]: Loss 0.00960
Validation:	Loss 0.00919	Accuracy 1.00000

We can also train the compact model with the exact same code!

julia
ps_trained2, st_trained2 = main(SpiralClassifierCompact)
┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore /var/lib/buildkite-agent/builds/gpuci-11/julialang/lux-dot-jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [  1]: Loss 0.61563
Validation:	Loss 0.57126	Accuracy 0.51562
Epoch [  2]: Loss 0.51757
Validation:	Loss 0.46939	Accuracy 1.00000
Epoch [  3]: Loss 0.41752
Validation:	Loss 0.37837	Accuracy 1.00000
Epoch [  4]: Loss 0.32122
Validation:	Loss 0.28153	Accuracy 1.00000
Epoch [  5]: Loss 0.23700
Validation:	Loss 0.20710	Accuracy 1.00000
Epoch [  6]: Loss 0.16973
Validation:	Loss 0.14718	Accuracy 1.00000
Epoch [  7]: Loss 0.12357
Validation:	Loss 0.11010	Accuracy 1.00000
Epoch [  8]: Loss 0.09505
Validation:	Loss 0.08645	Accuracy 1.00000
Epoch [  9]: Loss 0.07551
Validation:	Loss 0.06948	Accuracy 1.00000
Epoch [ 10]: Loss 0.06038
Validation:	Loss 0.05657	Accuracy 1.00000
Epoch [ 11]: Loss 0.04960
Validation:	Loss 0.04675	Accuracy 1.00000
Epoch [ 12]: Loss 0.04105
Validation:	Loss 0.03952	Accuracy 1.00000
Epoch [ 13]: Loss 0.03511
Validation:	Loss 0.03414	Accuracy 1.00000
Epoch [ 14]: Loss 0.03055
Validation:	Loss 0.03000	Accuracy 1.00000
Epoch [ 15]: Loss 0.02694
Validation:	Loss 0.02671	Accuracy 1.00000
Epoch [ 16]: Loss 0.02433
Validation:	Loss 0.02404	Accuracy 1.00000
Epoch [ 17]: Loss 0.02164
Validation:	Loss 0.02185	Accuracy 1.00000
Epoch [ 18]: Loss 0.01993
Validation:	Loss 0.02000	Accuracy 1.00000
Epoch [ 19]: Loss 0.01815
Validation:	Loss 0.01841	Accuracy 1.00000
Epoch [ 20]: Loss 0.01695
Validation:	Loss 0.01702	Accuracy 1.00000
Epoch [ 21]: Loss 0.01552
Validation:	Loss 0.01580	Accuracy 1.00000
Epoch [ 22]: Loss 0.01463
Validation:	Loss 0.01470	Accuracy 1.00000
Epoch [ 23]: Loss 0.01342
Validation:	Loss 0.01371	Accuracy 1.00000
Epoch [ 24]: Loss 0.01260
Validation:	Loss 0.01281	Accuracy 1.00000
Epoch [ 25]: Loss 0.01185
Validation:	Loss 0.01200	Accuracy 1.00000

Saving the Model

We can save the model using JLD2 (and any other serialization library of your choice) Note that we transfer the model to CPU before saving. Additionally, we recommend that you don't save the model struct and only save the parameters and states.

julia
@save "trained_model.jld2" ps_trained st_trained

Let's try loading the model

julia
@load "trained_model.jld2" ps_trained st_trained
2-element Vector{Symbol}:
 :ps_trained
 :st_trained

Appendix

julia
using InteractiveUtils
InteractiveUtils.versioninfo()

if @isdefined(MLDataDevices)
    if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
        println()
        CUDA.versioninfo()
    end

    if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
        println()
        AMDGPU.versioninfo()
    end
end
Julia Version 1.11.7
Commit f2b3dbda30a (2025-09-08 12:10 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 48 × AMD EPYC 7402 24-Core Processor
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver2)
Threads: 48 default, 0 interactive, 24 GC (on 2 virtual cores)
Environment:
  JULIA_CPU_THREADS = 2
  JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
  LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
  JULIA_PKG_SERVER = 
  JULIA_NUM_THREADS = 48
  JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
  JULIA_PKG_PRECOMPILE_AUTO = 0
  JULIA_DEBUG = Literate

This page was generated using Literate.jl.