Getting Started
Installation
Install Julia v1.10 or above. Lux.jl is available through the Julia package manager. You can enter it by pressing ]
in the REPL and then typing add Lux
. Alternatively, you can also do
import Pkg
Pkg.add("Lux")
Update to v1
If you are using a pre-v1 version of Lux.jl, please see the Updating to v1 section for instructions on how to update.
Quickstart
Pre-Requisites
You need to install Optimisers
and Zygote
if not done already. Pkg.add(["Optimisers", "Zygote"])
using Lux, Random, Optimisers, Zygote
# using LuxCUDA, AMDGPU, Metal, oneAPI # Optional packages for GPU support
We take randomness very seriously
# Seeding
rng = Random.default_rng()
Random.seed!(rng, 0)
Random.TaskLocalRNG()
Build the model
# Construct the layer
model = Chain(Dense(128, 256, tanh), Chain(Dense(256, 1, tanh), Dense(1, 10)))
Chain(
layer_1 = Dense(128 => 256, tanh), # 33_024 parameters
layer_2 = Chain(
layer_1 = Dense(256 => 1, tanh), # 257 parameters
layer_2 = Dense(1 => 10), # 20 parameters
),
) # Total: 33_301 parameters,
# plus 0 states.
Models don't hold parameters and states so initialize them. From there on, we can just use our standard AD and Optimisers API. However, here we will show how to use Lux's Training API that provides an uniform API over all supported AD systems.
# Get the device determined by Lux
dev = gpu_device()
# Parameter and State Variables
ps, st = Lux.setup(rng, model) |> dev
# Dummy Input
x = rand(rng, Float32, 128, 2) |> dev
# Run the model
y, st = Lux.apply(model, x, ps, st)
# Gradients
## First construct a TrainState
train_state = Lux.Training.TrainState(model, ps, st, Adam(0.0001f0))
## We can compute the gradients using Training.compute_gradients
gs, loss, stats, train_state = Lux.Training.compute_gradients(
AutoZygote(), MSELoss(),
(x, dev(rand(rng, Float32, 10, 2))), train_state
)
## Optimization
train_state = Training.apply_gradients!(train_state, gs) # or Training.apply_gradients (no `!` at the end)
# Both these steps can be combined into a single call
gs, loss, stats, train_state = Training.single_train_step!(
AutoZygote(), MSELoss(),
(x, dev(rand(rng, Float32, 10, 2))), train_state
)
((layer_1 = (weight = Float32[0.0017983615 0.006062332 … 0.0053392933 0.0056276177; 0.0011292367 0.0041270256 … 0.003585879 0.0038155357; … ; -0.0008762945 -0.0031371699 … -0.0027350332 -0.0029033197; 0.0011154839 0.002197485 … 0.0021741025 0.0021157824], bias = Float32[0.006656272, 0.004425203, 0.0028994146, -0.0116051175, 0.0031301186, 0.0037318026, 0.0136483535, 0.013969757, -0.015173428, -0.005173992 … -0.0018621369, -0.0015270555, -0.007873881, -0.0076395273, -0.0022123815, 0.0039605754, 0.0034407252, -0.0045406874, -0.003383829, 0.0029306945]), layer_2 = (layer_1 = (weight = Float32[0.04993449 0.03202845 … -0.059382 0.07701616], bias = Float32[0.08797912]), layer_2 = (weight = Float32[-0.094527975; -0.11476975; … ; -0.016841749; -0.0698748;;], bias = Float32[-0.21608135, -0.26255828, -0.23534852, -0.21524015, -0.055711076, -0.20314303, -0.1895644, 0.03666526, -0.03937737, -0.15905891]))), 0.8455785f0, NamedTuple(), Lux.Training.TrainState{Nothing, Nothing, Chain{@NamedTuple{layer_1::Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Chain{@NamedTuple{layer_1::Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}}, Nothing}, @NamedTuple{layer_1::@NamedTuple{weight::Matrix{Float32}, bias::Vector{Float32}}, layer_2::@NamedTuple{layer_1::@NamedTuple{weight::Matrix{Float32}, bias::Vector{Float32}}, layer_2::@NamedTuple{weight::Matrix{Float32}, bias::Vector{Float32}}}}, @NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}}}, Adam, @NamedTuple{layer_1::@NamedTuple{weight::Optimisers.Leaf{Adam, Tuple{Matrix{Float32}, Matrix{Float32}, Tuple{Float32, Float32}}}, bias::Optimisers.Leaf{Adam, Tuple{Vector{Float32}, Vector{Float32}, Tuple{Float32, Float32}}}}, layer_2::@NamedTuple{layer_1::@NamedTuple{weight::Optimisers.Leaf{Adam, Tuple{Matrix{Float32}, Matrix{Float32}, Tuple{Float32, Float32}}}, bias::Optimisers.Leaf{Adam, Tuple{Vector{Float32}, Vector{Float32}, Tuple{Float32, Float32}}}}, layer_2::@NamedTuple{weight::Optimisers.Leaf{Adam, Tuple{Matrix{Float32}, Matrix{Float32}, Tuple{Float32, Float32}}}, bias::Optimisers.Leaf{Adam, Tuple{Vector{Float32}, Vector{Float32}, Tuple{Float32, Float32}}}}}}}(nothing, nothing, Chain{@NamedTuple{layer_1::Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Chain{@NamedTuple{layer_1::Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}}, Nothing}((layer_1 = Dense(128 => 256, tanh), layer_2 = Chain{@NamedTuple{layer_1::Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}((layer_1 = Dense(256 => 1, tanh), layer_2 = Dense(1 => 10)), nothing)), nothing), (layer_1 = (weight = Float32[-0.22542597 0.22379348 … 0.1997513 -0.018708104; -0.023026714 0.15451026 … -0.065325744 0.18120264; … ; 0.038037397 -0.07125516 … -0.03306083 0.039138064; -0.18810266 -0.09693537 … -0.18102062 0.019230088], bias = Float32[0.030937059, -0.060276944, 0.084569596, 0.00040024254, -0.065509446, -0.08527214, -0.026523968, 0.06347208, 0.042247728, 0.027705256 … -0.06052852, 0.03504307, -0.028244259, 0.06788022, 0.0027464977, -0.06942153, 0.0064240773, 0.0141069945, -0.029283267, 0.01174226]), layer_2 = (layer_1 = (weight = Float32[0.12008221 0.06026435 … -0.070576 0.1577647], bias = Float32[0.026844418]), layer_2 = (weight = Float32[0.5345728; -0.28288874; … ; -0.32983455; -0.45298168;;], bias = Float32[-0.59751064, -0.7033041, -0.8457602, -0.53789175, -0.31473723, 0.17461234, -0.82945836, 0.67841595, 0.35837248, -0.14941788]))), (layer_1 = NamedTuple(), layer_2 = (layer_1 = NamedTuple(), layer_2 = NamedTuple())), Adam(0.0001, (0.9, 0.999), 1.0e-8), (layer_1 = (weight = Leaf(Adam(0.0001, (0.9, 0.999), 1.0e-8), (Float32[0.000926728 0.000860063 … 0.00110328 0.000908301; 0.000480834 0.000574605 … 0.000665883 0.000584197; … ; -0.000391039 -0.000438617 … -0.000520651 -0.000449867; 0.00106235 0.000365587 … 0.000813131 0.000495484], Float32[7.20343f-8 4.46976f-8 … 6.84867f-8 4.63952f-8; 1.79691f-8 2.02649f-8 … 2.45046f-8 1.96227f-8; … ; 1.21215f-8 1.17657f-8 … 1.50136f-8 1.15681f-8; 1.12738f-7 7.45199f-9 … 4.8495f-8 1.44173f-8], (0.729, 0.997003))), bias = Leaf(Adam(0.0001, (0.9, 0.999), 1.0e-8), (Float32[0.00169459, 0.000977637, 0.00103866, -0.00234933, 0.000659175, 0.000868318, 0.00303222, 0.00271383, -0.00326585, -0.0014993 … -0.000480712, -0.000501535, -0.00174489, -0.00160158, -0.000470662, 0.00127967, 0.000618911, -0.00103705, -0.000773079, 0.00146704], Float32[1.74884f-7, 5.48983f-8, 7.75433f-8, 3.08981f-7, 2.45763f-8, 4.41623f-8, 5.29156f-7, 4.09021f-7, 6.07287f-7, 1.45678f-7 … 1.4164f-8, 1.73391f-8, 1.7507f-7, 1.44894f-7, 1.25673f-8, 1.1198f-7, 2.11545f-8, 6.25338f-8, 3.4755f-8, 1.78565f-7], (0.729, 0.997003)))), layer_2 = (layer_1 = (weight = Leaf(Adam(0.0001, (0.9, 0.999), 1.0e-8), (Float32[0.00443555 0.00163654 … -0.0124978 0.0123434], Float32[2.53181f-6 1.32838f-6 … 8.83289f-6 8.58873f-6], (0.729, 0.997003))), bias = Leaf(Adam(0.0001, (0.9, 0.999), 1.0e-8), (Float32[0.0191175], Float32[2.08743f-5], (0.729, 0.997003)))), layer_2 = (weight = Leaf(Adam(0.0001, (0.9, 0.999), 1.0e-8), (Float32[-0.0172084; -0.0213176; … ; -0.00376332; -0.0116419;;], Float32[1.63537f-5; 2.51152f-5; … ; 8.16783f-7; 7.55419f-6;;], (0.729, 0.997003))), bias = Leaf(Adam(0.0001, (0.9, 0.999), 1.0e-8), (Float32[-0.0365001, -0.045083, -0.0507623, -0.0390298, -0.0242259, -0.0404982, -0.0358925, 0.0114351, -0.00803444, -0.0248332], Float32[7.40417f-5, 0.000112652, 0.000146818, 8.41229f-5, 4.60234f-5, 9.15105f-5, 7.13093f-5, 8.78741f-6, 3.62043f-6, 3.51285f-5], (0.729, 0.997003)))))), 2))
Defining Custom Layers
We can train our model using the above code, but let's go ahead and see how to use Reactant. Reactant is a julia frontend that generates MLIR and then compiles it using XLA (after running fancy optimizations). It is the current recommended way to train large models in Lux. For more details on using Reactant, see the manual.
using Lux, Random, Optimisers, Reactant, Enzyme
using Printf # For pretty printing
dev = reactant_device()
(::ReactantDevice{Missing, Missing}) (generic function with 1 method)
We will define a custom MLP using the @compact
macro. The macro takes in a list of parameters, layers and states, and a function defining the forward pass of the neural network.
n_in = 1
n_out = 1
nlayers = 3
model = @compact(
w1=Dense(n_in => 32),
w2=[Dense(32 => 32) for i in 1:nlayers],
w3=Dense(32 => n_out),
act=relu
) do x
embed = act(w1(x))
for w in w2
embed = act(w(embed))
end
out = w3(embed)
@return out
end
@compact(
w1 = Dense(1 => 32), # 64 parameters
w2 = NamedTuple(
1 = Dense(32 => 32), # 1_056 parameters
2 = Dense(32 => 32), # 1_056 parameters
3 = Dense(32 => 32), # 1_056 parameters
),
w3 = Dense(32 => 1), # 33 parameters
act = relu,
) do x
embed = act(w1(x))
for w = w2
embed = act(w(embed))
end
out = w3(embed)
return out
end # Total: 3_265 parameters,
# plus 1 states.
We can initialize the model and train it with the same code as before!
rng = Random.default_rng()
Random.seed!(rng, 0)
ps, st = Lux.setup(rng, model) |> dev
x = rand(rng, Float32, n_in, 32) |> dev
@jit model(x, ps, st) # 1×32 Matrix and updated state as output.
x_data = reshape(collect(-2.0f0:0.1f0:2.0f0), 1, :)
y_data = 2 .* x_data .- x_data .^ 3
x_data, y_data = dev(x_data), dev(y_data)
function train_model!(model, ps, st, x_data, y_data)
train_state = Lux.Training.TrainState(model, ps, st, Adam(0.001f0))
for iter in 1:1000
_, loss, _, train_state = Lux.Training.single_train_step!(
AutoEnzyme(), MSELoss(),
(x_data, y_data), train_state
)
if iter % 100 == 1 || iter == 1000
@printf "Iteration: %04d \t Loss: %10.9g\n" iter loss
end
end
return model, ps, st
end
train_model!(model, ps, st, x_data, y_data)
E0000 00:00:1739762646.295757 202456 buffer_comparator.cc:156] Difference at 16: -nan, expected 29.4863
E0000 00:00:1739762646.296357 202456 buffer_comparator.cc:156] Difference at 17: -nan, expected 25.4275
E0000 00:00:1739762646.296365 202456 buffer_comparator.cc:156] Difference at 18: -nan, expected 29.498
E0000 00:00:1739762646.296372 202456 buffer_comparator.cc:156] Difference at 19: -nan, expected 24.9024
E0000 00:00:1739762646.296378 202456 buffer_comparator.cc:156] Difference at 20: -nan, expected 31.8883
E0000 00:00:1739762646.296385 202456 buffer_comparator.cc:156] Difference at 21: -nan, expected 30.5795
E0000 00:00:1739762646.296391 202456 buffer_comparator.cc:156] Difference at 22: -nan, expected 26.1755
E0000 00:00:1739762646.296397 202456 buffer_comparator.cc:156] Difference at 23: -nan, expected 30.0282
E0000 00:00:1739762646.296403 202456 buffer_comparator.cc:156] Difference at 24: -nan, expected 25.7237
E0000 00:00:1739762646.296409 202456 buffer_comparator.cc:156] Difference at 25: -nan, expected 25.7191
2025-02-17 03:24:06.296448: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1138] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1739762646.298876 202456 buffer_comparator.cc:156] Difference at 16: -nan, expected 29.4863
E0000 00:00:1739762646.298902 202456 buffer_comparator.cc:156] Difference at 17: -nan, expected 25.4275
E0000 00:00:1739762646.298909 202456 buffer_comparator.cc:156] Difference at 18: -nan, expected 29.498
E0000 00:00:1739762646.298915 202456 buffer_comparator.cc:156] Difference at 19: -nan, expected 24.9024
E0000 00:00:1739762646.298922 202456 buffer_comparator.cc:156] Difference at 20: -nan, expected 31.8883
E0000 00:00:1739762646.298928 202456 buffer_comparator.cc:156] Difference at 21: -nan, expected 30.5795
E0000 00:00:1739762646.298934 202456 buffer_comparator.cc:156] Difference at 22: -nan, expected 26.1755
E0000 00:00:1739762646.298940 202456 buffer_comparator.cc:156] Difference at 23: -nan, expected 30.0282
E0000 00:00:1739762646.298946 202456 buffer_comparator.cc:156] Difference at 24: -nan, expected 25.7237
E0000 00:00:1739762646.298953 202456 buffer_comparator.cc:156] Difference at 25: -nan, expected 25.7191
2025-02-17 03:24:06.298962: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1138] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1739762646.301322 202456 buffer_comparator.cc:156] Difference at 512: -nan, expected 13.9275
E0000 00:00:1739762646.301348 202456 buffer_comparator.cc:156] Difference at 513: -nan, expected 12.9447
E0000 00:00:1739762646.301355 202456 buffer_comparator.cc:156] Difference at 514: -nan, expected 13.899
E0000 00:00:1739762646.301361 202456 buffer_comparator.cc:156] Difference at 515: -nan, expected 14.1578
E0000 00:00:1739762646.301367 202456 buffer_comparator.cc:156] Difference at 516: -nan, expected 15.4892
E0000 00:00:1739762646.301373 202456 buffer_comparator.cc:156] Difference at 517: -nan, expected 16.545
E0000 00:00:1739762646.301380 202456 buffer_comparator.cc:156] Difference at 518: -nan, expected 17.8581
E0000 00:00:1739762646.301386 202456 buffer_comparator.cc:156] Difference at 519: -nan, expected 13.0536
E0000 00:00:1739762646.301392 202456 buffer_comparator.cc:156] Difference at 520: -nan, expected 16.1329
E0000 00:00:1739762646.301398 202456 buffer_comparator.cc:156] Difference at 521: -nan, expected 14.5245
2025-02-17 03:24:06.301408: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1138] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1739762646.303744 202456 buffer_comparator.cc:156] Difference at 528: -nan, expected 17.5032
E0000 00:00:1739762646.303757 202456 buffer_comparator.cc:156] Difference at 529: -nan, expected 15.1785
E0000 00:00:1739762646.303760 202456 buffer_comparator.cc:156] Difference at 530: -nan, expected 15.9473
E0000 00:00:1739762646.303763 202456 buffer_comparator.cc:156] Difference at 531: -nan, expected 14.437
E0000 00:00:1739762646.303768 202456 buffer_comparator.cc:156] Difference at 532: -nan, expected 17.9637
E0000 00:00:1739762646.303771 202456 buffer_comparator.cc:156] Difference at 533: -nan, expected 17.3157
E0000 00:00:1739762646.303773 202456 buffer_comparator.cc:156] Difference at 534: -nan, expected 15.7802
E0000 00:00:1739762646.303776 202456 buffer_comparator.cc:156] Difference at 535: -nan, expected 17.6887
E0000 00:00:1739762646.303779 202456 buffer_comparator.cc:156] Difference at 536: -nan, expected 15.1881
E0000 00:00:1739762646.303782 202456 buffer_comparator.cc:156] Difference at 537: -nan, expected 14.4224
2025-02-17 03:24:06.303786: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1138] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1739762646.320774 202456 buffer_comparator.cc:156] Difference at 16: 0, expected 18.4532
E0000 00:00:1739762646.320787 202456 buffer_comparator.cc:156] Difference at 17: 0, expected 16.1701
E0000 00:00:1739762646.320791 202456 buffer_comparator.cc:156] Difference at 18: 0, expected 18.5372
E0000 00:00:1739762646.320794 202456 buffer_comparator.cc:156] Difference at 19: 0, expected 17.7684
E0000 00:00:1739762646.320797 202456 buffer_comparator.cc:156] Difference at 20: 0, expected 17.8078
E0000 00:00:1739762646.320799 202456 buffer_comparator.cc:156] Difference at 21: 0, expected 17.412
E0000 00:00:1739762646.320802 202456 buffer_comparator.cc:156] Difference at 22: 0, expected 18.0425
E0000 00:00:1739762646.320805 202456 buffer_comparator.cc:156] Difference at 23: 0, expected 17.7822
E0000 00:00:1739762646.320808 202456 buffer_comparator.cc:156] Difference at 24: 0, expected 16.8692
E0000 00:00:1739762646.320811 202456 buffer_comparator.cc:156] Difference at 25: 0, expected 19.6248
2025-02-17 03:24:06.320816: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1138] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1739762646.322860 202456 buffer_comparator.cc:156] Difference at 16: 0, expected 18.4532
E0000 00:00:1739762646.322872 202456 buffer_comparator.cc:156] Difference at 17: 0, expected 16.1701
E0000 00:00:1739762646.322876 202456 buffer_comparator.cc:156] Difference at 18: 0, expected 18.5372
E0000 00:00:1739762646.322879 202456 buffer_comparator.cc:156] Difference at 19: 0, expected 17.7684
E0000 00:00:1739762646.322882 202456 buffer_comparator.cc:156] Difference at 20: 0, expected 17.8078
E0000 00:00:1739762646.322884 202456 buffer_comparator.cc:156] Difference at 21: 0, expected 17.412
E0000 00:00:1739762646.322887 202456 buffer_comparator.cc:156] Difference at 22: 0, expected 18.0425
E0000 00:00:1739762646.322890 202456 buffer_comparator.cc:156] Difference at 23: 0, expected 17.7822
E0000 00:00:1739762646.322893 202456 buffer_comparator.cc:156] Difference at 24: 0, expected 16.8692
E0000 00:00:1739762646.322896 202456 buffer_comparator.cc:156] Difference at 25: 0, expected 19.6248
2025-02-17 03:24:06.322901: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1138] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1739762646.324958 202456 buffer_comparator.cc:156] Difference at 656: 0, expected 15.8892
E0000 00:00:1739762646.324970 202456 buffer_comparator.cc:156] Difference at 657: 0, expected 15.1292
E0000 00:00:1739762646.324973 202456 buffer_comparator.cc:156] Difference at 658: 0, expected 14.0499
E0000 00:00:1739762646.324976 202456 buffer_comparator.cc:156] Difference at 659: 0, expected 13.8377
E0000 00:00:1739762646.324979 202456 buffer_comparator.cc:156] Difference at 660: 0, expected 13.7353
E0000 00:00:1739762646.324982 202456 buffer_comparator.cc:156] Difference at 661: 0, expected 15.7468
E0000 00:00:1739762646.324985 202456 buffer_comparator.cc:156] Difference at 662: 0, expected 14.9101
E0000 00:00:1739762646.324988 202456 buffer_comparator.cc:156] Difference at 663: 0, expected 14.8135
E0000 00:00:1739762646.324992 202456 buffer_comparator.cc:156] Difference at 664: 0, expected 13.6403
E0000 00:00:1739762646.324995 202456 buffer_comparator.cc:156] Difference at 665: 0, expected 15.8348
2025-02-17 03:24:06.325000: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1138] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1739762646.327041 202456 buffer_comparator.cc:156] Difference at 672: 0, expected 16.0696
E0000 00:00:1739762646.327053 202456 buffer_comparator.cc:156] Difference at 673: 0, expected 14.3019
E0000 00:00:1739762646.327056 202456 buffer_comparator.cc:156] Difference at 674: 0, expected 15.5573
E0000 00:00:1739762646.327059 202456 buffer_comparator.cc:156] Difference at 675: 0, expected 14.6242
E0000 00:00:1739762646.327062 202456 buffer_comparator.cc:156] Difference at 676: 0, expected 14.8486
E0000 00:00:1739762646.327065 202456 buffer_comparator.cc:156] Difference at 677: 0, expected 14.7699
E0000 00:00:1739762646.327067 202456 buffer_comparator.cc:156] Difference at 678: 0, expected 15.1617
E0000 00:00:1739762646.327070 202456 buffer_comparator.cc:156] Difference at 679: 0, expected 14.9394
E0000 00:00:1739762646.327073 202456 buffer_comparator.cc:156] Difference at 680: 0, expected 13.4678
E0000 00:00:1739762646.327076 202456 buffer_comparator.cc:156] Difference at 681: 0, expected 16.1851
2025-02-17 03:24:06.327080: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1138] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1739762646.329125 202456 buffer_comparator.cc:156] Difference at 688: 0, expected 15.1187
E0000 00:00:1739762646.329136 202456 buffer_comparator.cc:156] Difference at 689: 0, expected 14.6251
E0000 00:00:1739762646.329140 202456 buffer_comparator.cc:156] Difference at 690: 0, expected 14.2005
E0000 00:00:1739762646.329143 202456 buffer_comparator.cc:156] Difference at 691: 0, expected 15.1561
E0000 00:00:1739762646.329146 202456 buffer_comparator.cc:156] Difference at 692: 0, expected 15.4235
E0000 00:00:1739762646.329149 202456 buffer_comparator.cc:156] Difference at 693: 0, expected 14.1331
E0000 00:00:1739762646.329151 202456 buffer_comparator.cc:156] Difference at 694: 0, expected 14.4063
E0000 00:00:1739762646.329154 202456 buffer_comparator.cc:156] Difference at 695: 0, expected 14.0259
E0000 00:00:1739762646.329157 202456 buffer_comparator.cc:156] Difference at 696: 0, expected 15.0279
E0000 00:00:1739762646.329160 202456 buffer_comparator.cc:156] Difference at 729: 0, expected 14.5946
2025-02-17 03:24:06.329165: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1138] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1739762646.331353 202456 buffer_comparator.cc:156] Difference at 688: 0, expected 15.1187
E0000 00:00:1739762646.331365 202456 buffer_comparator.cc:156] Difference at 689: 0, expected 14.6251
E0000 00:00:1739762646.331368 202456 buffer_comparator.cc:156] Difference at 690: 0, expected 14.2005
E0000 00:00:1739762646.331371 202456 buffer_comparator.cc:156] Difference at 691: 0, expected 15.1561
E0000 00:00:1739762646.331374 202456 buffer_comparator.cc:156] Difference at 692: 0, expected 15.4235
E0000 00:00:1739762646.331377 202456 buffer_comparator.cc:156] Difference at 693: 0, expected 14.1331
E0000 00:00:1739762646.331380 202456 buffer_comparator.cc:156] Difference at 694: 0, expected 14.4063
E0000 00:00:1739762646.331383 202456 buffer_comparator.cc:156] Difference at 695: 0, expected 14.0259
E0000 00:00:1739762646.331386 202456 buffer_comparator.cc:156] Difference at 696: 0, expected 15.0279
E0000 00:00:1739762646.331389 202456 buffer_comparator.cc:156] Difference at 729: 0, expected 14.5946
2025-02-17 03:24:06.331393: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1138] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1739762646.333404 202456 buffer_comparator.cc:156] Difference at 688: 0, expected 15.1187
E0000 00:00:1739762646.333416 202456 buffer_comparator.cc:156] Difference at 689: 0, expected 14.6251
E0000 00:00:1739762646.333419 202456 buffer_comparator.cc:156] Difference at 690: 0, expected 14.2005
E0000 00:00:1739762646.333422 202456 buffer_comparator.cc:156] Difference at 691: 0, expected 15.1561
E0000 00:00:1739762646.333425 202456 buffer_comparator.cc:156] Difference at 692: 0, expected 15.4235
E0000 00:00:1739762646.333428 202456 buffer_comparator.cc:156] Difference at 693: 0, expected 14.1331
E0000 00:00:1739762646.333430 202456 buffer_comparator.cc:156] Difference at 694: 0, expected 14.4063
E0000 00:00:1739762646.333433 202456 buffer_comparator.cc:156] Difference at 695: 0, expected 14.0259
E0000 00:00:1739762646.333436 202456 buffer_comparator.cc:156] Difference at 696: 0, expected 15.0279
E0000 00:00:1739762646.333439 202456 buffer_comparator.cc:156] Difference at 729: 0, expected 14.5946
2025-02-17 03:24:06.333444: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1138] Results do not match the reference. This is likely a bug/unexpected loss of precision.
Iteration: 0001 Loss: 2.08086824
Iteration: 0101 Loss: 0.135109991
Iteration: 0201 Loss: 0.00448962208
Iteration: 0301 Loss: 0.00111342408
Iteration: 0401 Loss: 0.000457020855
Iteration: 0501 Loss: 0.000461334654
Iteration: 0601 Loss: 0.000210383674
Iteration: 0701 Loss: 0.000209954742
Iteration: 0801 Loss: 0.000158460374
Iteration: 0901 Loss: 9.63655111e-05
Iteration: 1000 Loss: 0.000503897725
Training with Optimization.jl
If you are coming from the SciML ecosystem and want to use Optimization.jl, please refer to the Optimization.jl Tutorial.
Additional Packages
LuxDL
hosts various packages that provide additional functionality for Lux.jl. All packages mentioned in this documentation are available via the Julia General Registry.
You can install all those packages via import Pkg; Pkg.add(<package name>)
.
XLA (CPU/GPU/TPU) Support
Lux.jl supports XLA compilation for CPU, GPU, and TPU using Reactant.jl.
GPU Support
GPU Support for Lux.jl requires loading additional packages:
LuxCUDA.jl
for CUDA support.AMDGPU.jl
for AMDGPU support.Metal.jl
for Apple Metal support.oneAPI.jl
for oneAPI support.