Getting Started
Installation
Install Julia v1.10 or above. Lux.jl is available through the Julia package manager. You can enter it by pressing ]
in the REPL and then typing add Lux
. Alternatively, you can also do
import Pkg
Pkg.add("Lux")
Update to v1
If you are using a pre-v1 version of Lux.jl, please see the Updating to v1 section for instructions on how to update.
Quickstart
Pre-Requisites
You need to install Optimisers
and Zygote
if not done already. Pkg.add(["Optimisers", "Zygote"])
using Lux, Random, Optimisers, Zygote
# using LuxCUDA, AMDGPU, Metal, oneAPI # Optional packages for GPU support
We take randomness very seriously
# Seeding
rng = Random.default_rng()
Random.seed!(rng, 0)
Random.TaskLocalRNG()
Build the model
# Construct the layer
model = Chain(Dense(128, 256, tanh), Chain(Dense(256, 1, tanh), Dense(1, 10)))
Chain(
layer_1 = Dense(128 => 256, tanh), # 33_024 parameters
layer_2 = Chain(
layer_1 = Dense(256 => 1, tanh), # 257 parameters
layer_2 = Dense(1 => 10), # 20 parameters
),
) # Total: 33_301 parameters,
# plus 0 states.
Models don't hold parameters and states so initialize them. From there on, we can just use our standard AD and Optimisers API. However, here we will show how to use Lux's Training API that provides an uniform API over all supported AD systems.
# Get the device determined by Lux
dev = gpu_device()
# Parameter and State Variables
ps, st = Lux.setup(rng, model) |> dev
# Dummy Input
x = rand(rng, Float32, 128, 2) |> dev
# Run the model
y, st = Lux.apply(model, x, ps, st)
# Gradients
## First construct a TrainState
train_state = Lux.Training.TrainState(model, ps, st, Adam(0.0001f0))
## We can compute the gradients using Training.compute_gradients
gs, loss, stats, train_state = Lux.Training.compute_gradients(
AutoZygote(), MSELoss(),
(x, dev(rand(rng, Float32, 10, 2))), train_state
)
## Optimization
train_state = Training.apply_gradients!(train_state, gs) # or Training.apply_gradients (no `!` at the end)
# Both these steps can be combined into a single call
gs, loss, stats, train_state = Training.single_train_step!(
AutoZygote(), MSELoss(),
(x, dev(rand(rng, Float32, 10, 2))), train_state
)
((layer_1 = (weight = Float32[0.0017983615 0.006062332 … 0.0053392933 0.0056276177; 0.0011292367 0.0041270256 … 0.003585879 0.0038155357; … ; -0.0008762945 -0.0031371699 … -0.0027350332 -0.0029033197; 0.0011154839 0.002197485 … 0.0021741025 0.0021157824], bias = Float32[0.006656272, 0.004425203, 0.0028994146, -0.0116051175, 0.0031301186, 0.0037318026, 0.0136483535, 0.013969757, -0.015173428, -0.005173992 … -0.0018621369, -0.0015270555, -0.007873881, -0.0076395273, -0.0022123815, 0.0039605754, 0.0034407252, -0.0045406874, -0.003383829, 0.0029306945]), layer_2 = (layer_1 = (weight = Float32[0.04993449 0.03202845 … -0.059382 0.07701616], bias = Float32[0.08797912]), layer_2 = (weight = Float32[-0.094527975; -0.11476975; … ; -0.016841749; -0.0698748;;], bias = Float32[-0.21608135, -0.26255828, -0.23534852, -0.21524015, -0.055711076, -0.20314303, -0.1895644, 0.03666526, -0.03937737, -0.15905891]))), 0.8455785f0, NamedTuple(), Lux.Training.TrainState{Nothing, Nothing, Chain{@NamedTuple{layer_1::Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Chain{@NamedTuple{layer_1::Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}}, Nothing}, @NamedTuple{layer_1::@NamedTuple{weight::Matrix{Float32}, bias::Vector{Float32}}, layer_2::@NamedTuple{layer_1::@NamedTuple{weight::Matrix{Float32}, bias::Vector{Float32}}, layer_2::@NamedTuple{weight::Matrix{Float32}, bias::Vector{Float32}}}}, @NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}}}, Adam{Float32, Tuple{Float64, Float64}, Float64}, @NamedTuple{layer_1::@NamedTuple{weight::Optimisers.Leaf{Adam{Float32, Tuple{Float64, Float64}, Float64}, Tuple{Matrix{Float32}, Matrix{Float32}, Tuple{Float32, Float32}}}, bias::Optimisers.Leaf{Adam{Float32, Tuple{Float64, Float64}, Float64}, Tuple{Vector{Float32}, Vector{Float32}, Tuple{Float32, Float32}}}}, layer_2::@NamedTuple{layer_1::@NamedTuple{weight::Optimisers.Leaf{Adam{Float32, Tuple{Float64, Float64}, Float64}, Tuple{Matrix{Float32}, Matrix{Float32}, Tuple{Float32, Float32}}}, bias::Optimisers.Leaf{Adam{Float32, Tuple{Float64, Float64}, Float64}, Tuple{Vector{Float32}, Vector{Float32}, Tuple{Float32, Float32}}}}, layer_2::@NamedTuple{weight::Optimisers.Leaf{Adam{Float32, Tuple{Float64, Float64}, Float64}, Tuple{Matrix{Float32}, Matrix{Float32}, Tuple{Float32, Float32}}}, bias::Optimisers.Leaf{Adam{Float32, Tuple{Float64, Float64}, Float64}, Tuple{Vector{Float32}, Vector{Float32}, Tuple{Float32, Float32}}}}}}}(nothing, nothing, Chain{@NamedTuple{layer_1::Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Chain{@NamedTuple{layer_1::Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}}, Nothing}((layer_1 = Dense(128 => 256, tanh), layer_2 = Chain{@NamedTuple{layer_1::Dense{typeof(tanh), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}((layer_1 = Dense(256 => 1, tanh), layer_2 = Dense(1 => 10)), nothing)), nothing), (layer_1 = (weight = Float32[-0.22542597 0.22379348 … 0.1997513 -0.018708104; -0.023026714 0.15451026 … -0.065325744 0.18120264; … ; 0.038037397 -0.07125516 … -0.03306083 0.039138064; -0.18810266 -0.09693537 … -0.18102062 0.019230088], bias = Float32[0.030937059, -0.060276944, 0.084569596, 0.00040024254, -0.065509446, -0.08527214, -0.026523968, 0.06347208, 0.042247728, 0.027705256 … -0.06052852, 0.03504307, -0.028244259, 0.06788022, 0.0027464977, -0.06942153, 0.0064240773, 0.0141069945, -0.029283267, 0.01174226]), layer_2 = (layer_1 = (weight = Float32[0.12008221 0.06026435 … -0.070576 0.1577647], bias = Float32[0.026844418]), layer_2 = (weight = Float32[0.5345728; -0.28288874; … ; -0.32983455; -0.45298168;;], bias = Float32[-0.59751064, -0.7033041, -0.8457602, -0.53789175, -0.31473723, 0.17461234, -0.82945836, 0.67841595, 0.35837248, -0.14941788]))), (layer_1 = NamedTuple(), layer_2 = (layer_1 = NamedTuple(), layer_2 = NamedTuple())), Adam(eta=0.0001, beta=(0.9, 0.999), epsilon=1.0e-8), (layer_1 = (weight = Leaf(Adam(eta=0.0001, beta=(0.9, 0.999), epsilon=1.0e-8), (Float32[0.000926728 0.000860063 … 0.00110328 0.000908301; 0.000480834 0.000574605 … 0.000665883 0.000584197; … ; -0.000391039 -0.000438617 … -0.000520651 -0.000449867; 0.00106235 0.000365587 … 0.000813131 0.000495484], Float32[7.20343f-8 4.46976f-8 … 6.84867f-8 4.63952f-8; 1.79691f-8 2.02649f-8 … 2.45046f-8 1.96227f-8; … ; 1.21215f-8 1.17657f-8 … 1.50136f-8 1.15681f-8; 1.12738f-7 7.45199f-9 … 4.8495f-8 1.44173f-8], (0.729, 0.997003))), bias = Leaf(Adam(eta=0.0001, beta=(0.9, 0.999), epsilon=1.0e-8), (Float32[0.00169459, 0.000977637, 0.00103866, -0.00234933, 0.000659175, 0.000868318, 0.00303222, 0.00271383, -0.00326585, -0.0014993 … -0.000480712, -0.000501535, -0.00174489, -0.00160158, -0.000470662, 0.00127967, 0.000618911, -0.00103705, -0.000773079, 0.00146704], Float32[1.74884f-7, 5.48983f-8, 7.75433f-8, 3.08981f-7, 2.45763f-8, 4.41623f-8, 5.29156f-7, 4.09021f-7, 6.07287f-7, 1.45678f-7 … 1.4164f-8, 1.73391f-8, 1.7507f-7, 1.44894f-7, 1.25673f-8, 1.1198f-7, 2.11545f-8, 6.25338f-8, 3.4755f-8, 1.78565f-7], (0.729, 0.997003)))), layer_2 = (layer_1 = (weight = Leaf(Adam(eta=0.0001, beta=(0.9, 0.999), epsilon=1.0e-8), (Float32[0.00443555 0.00163654 … -0.0124978 0.0123434], Float32[2.53181f-6 1.32838f-6 … 8.83289f-6 8.58873f-6], (0.729, 0.997003))), bias = Leaf(Adam(eta=0.0001, beta=(0.9, 0.999), epsilon=1.0e-8), (Float32[0.0191175], Float32[2.08743f-5], (0.729, 0.997003)))), layer_2 = (weight = Leaf(Adam(eta=0.0001, beta=(0.9, 0.999), epsilon=1.0e-8), (Float32[-0.0172084; -0.0213176; … ; -0.00376332; -0.0116419;;], Float32[1.63537f-5; 2.51152f-5; … ; 8.16783f-7; 7.55419f-6;;], (0.729, 0.997003))), bias = Leaf(Adam(eta=0.0001, beta=(0.9, 0.999), epsilon=1.0e-8), (Float32[-0.0365001, -0.045083, -0.0507623, -0.0390298, -0.0242259, -0.0404982, -0.0358925, 0.0114351, -0.00803444, -0.0248332], Float32[7.40417f-5, 0.000112652, 0.000146818, 8.41229f-5, 4.60234f-5, 9.15105f-5, 7.13093f-5, 8.78741f-6, 3.62043f-6, 3.51285f-5], (0.729, 0.997003)))))), 2))
Defining Custom Layers
We can train our model using the above code, but let's go ahead and see how to use Reactant. Reactant is a julia frontend that generates MLIR and then compiles it using XLA (after running fancy optimizations). It is the current recommended way to train large models in Lux. For more details on using Reactant, see the manual.
using Lux, Random, Optimisers, Reactant, Enzyme
using Printf # For pretty printing
dev = reactant_device()
(::ReactantDevice{Missing, Missing, Missing}) (generic function with 1 method)
We will define a custom MLP using the @compact
macro. The macro takes in a list of parameters, layers and states, and a function defining the forward pass of the neural network.
n_in = 1
n_out = 1
nlayers = 3
model = @compact(
w1=Dense(n_in => 32),
w2=[Dense(32 => 32) for i in 1:nlayers],
w3=Dense(32 => n_out),
act=relu
) do x
embed = act(w1(x))
for w in w2
embed = act(w(embed))
end
out = w3(embed)
@return out
end
@compact(
w1 = Dense(1 => 32), # 64 parameters
w2 = NamedTuple(
1 = Dense(32 => 32), # 1_056 parameters
2 = Dense(32 => 32), # 1_056 parameters
3 = Dense(32 => 32), # 1_056 parameters
),
w3 = Dense(32 => 1), # 33 parameters
act = relu,
) do x
embed = act(w1(x))
for w = w2
embed = act(w(embed))
end
out = w3(embed)
return out
end # Total: 3_265 parameters,
# plus 1 states.
We can initialize the model and train it with the same code as before!
rng = Random.default_rng()
Random.seed!(rng, 0)
ps, st = Lux.setup(rng, model) |> dev
x = rand(rng, Float32, n_in, 32) |> dev
@jit model(x, ps, st) # 1×32 Matrix and updated state as output.
x_data = reshape(collect(-2.0f0:0.1f0:2.0f0), 1, :)
y_data = 2 .* x_data .- x_data .^ 3
x_data, y_data = dev(x_data), dev(y_data)
function train_model!(model, ps, st, x_data, y_data)
train_state = Lux.Training.TrainState(model, ps, st, Adam(0.001f0))
for iter in 1:1000
_, loss, _, train_state = Lux.Training.single_train_step!(
AutoEnzyme(), MSELoss(),
(x_data, y_data), train_state
)
if iter % 100 == 1 || iter == 1000
@printf "Iteration: %04d \t Loss: %10.9g\n" iter loss
end
end
return model, ps, st
end
train_model!(model, ps, st, x_data, y_data)
2025-05-23 23:12:44.284262: I external/xla/xla/service/service.cc:152] XLA service 0x120acae0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2025-05-23 23:12:44.284466: I external/xla/xla/service/service.cc:160] StreamExecutor device (0): NVIDIA A100-PCIE-40GB MIG 1g.5gb, Compute Capability 8.0
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1748041964.285263 847441 se_gpu_pjrt_client.cc:1026] Using BFC allocator.
I0000 00:00:1748041964.285346 847441 gpu_helpers.cc:136] XLA backend allocating 3825205248 bytes on device 0 for BFCAllocator.
I0000 00:00:1748041964.285375 847441 gpu_helpers.cc:177] XLA backend will use up to 1275068416 bytes on device 0 for CollectiveBFCAllocator.
I0000 00:00:1748041964.299179 847441 cuda_dnn.cc:529] Loaded cuDNN version 90400
E0000 00:00:1748042237.836396 847441 buffer_comparator.cc:145] Difference at 16: 0, expected 18.4532
E0000 00:00:1748042237.836446 847441 buffer_comparator.cc:145] Difference at 17: 0, expected 16.1701
E0000 00:00:1748042237.836457 847441 buffer_comparator.cc:145] Difference at 18: 0, expected 18.5372
E0000 00:00:1748042237.836461 847441 buffer_comparator.cc:145] Difference at 19: 0, expected 17.7684
E0000 00:00:1748042237.836464 847441 buffer_comparator.cc:145] Difference at 20: 0, expected 17.8078
E0000 00:00:1748042237.836467 847441 buffer_comparator.cc:145] Difference at 21: 0, expected 17.412
E0000 00:00:1748042237.836470 847441 buffer_comparator.cc:145] Difference at 22: 0, expected 18.0425
E0000 00:00:1748042237.836474 847441 buffer_comparator.cc:145] Difference at 23: 0, expected 17.7822
E0000 00:00:1748042237.836477 847441 buffer_comparator.cc:145] Difference at 24: 0, expected 16.8692
E0000 00:00:1748042237.836480 847441 buffer_comparator.cc:145] Difference at 25: 0, expected 19.6248
2025-05-23 23:17:17.836490: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.839380 847441 buffer_comparator.cc:145] Difference at 16: 0, expected 18.4532
E0000 00:00:1748042237.839394 847441 buffer_comparator.cc:145] Difference at 17: 0, expected 16.1701
E0000 00:00:1748042237.839399 847441 buffer_comparator.cc:145] Difference at 18: 0, expected 18.5372
E0000 00:00:1748042237.839402 847441 buffer_comparator.cc:145] Difference at 19: 0, expected 17.7684
E0000 00:00:1748042237.839405 847441 buffer_comparator.cc:145] Difference at 20: 0, expected 17.8078
E0000 00:00:1748042237.839408 847441 buffer_comparator.cc:145] Difference at 21: 0, expected 17.412
E0000 00:00:1748042237.839411 847441 buffer_comparator.cc:145] Difference at 22: 0, expected 18.0425
E0000 00:00:1748042237.839414 847441 buffer_comparator.cc:145] Difference at 23: 0, expected 17.7822
E0000 00:00:1748042237.839417 847441 buffer_comparator.cc:145] Difference at 24: 0, expected 16.8692
E0000 00:00:1748042237.839420 847441 buffer_comparator.cc:145] Difference at 25: 0, expected 19.6248
2025-05-23 23:17:17.839426: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.842302 847441 buffer_comparator.cc:145] Difference at 656: 0, expected 15.8892
E0000 00:00:1748042237.842316 847441 buffer_comparator.cc:145] Difference at 657: 0, expected 15.1292
E0000 00:00:1748042237.842321 847441 buffer_comparator.cc:145] Difference at 658: 0, expected 14.0499
E0000 00:00:1748042237.842324 847441 buffer_comparator.cc:145] Difference at 659: 0, expected 13.8377
E0000 00:00:1748042237.842327 847441 buffer_comparator.cc:145] Difference at 660: 0, expected 13.7353
E0000 00:00:1748042237.842330 847441 buffer_comparator.cc:145] Difference at 661: 0, expected 15.7468
E0000 00:00:1748042237.842333 847441 buffer_comparator.cc:145] Difference at 662: 0, expected 14.9101
E0000 00:00:1748042237.842336 847441 buffer_comparator.cc:145] Difference at 663: 0, expected 14.8135
E0000 00:00:1748042237.842339 847441 buffer_comparator.cc:145] Difference at 664: 0, expected 13.6403
E0000 00:00:1748042237.842342 847441 buffer_comparator.cc:145] Difference at 665: 0, expected 15.8348
2025-05-23 23:17:17.842347: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.845220 847441 buffer_comparator.cc:145] Difference at 672: 0, expected 16.0696
E0000 00:00:1748042237.845232 847441 buffer_comparator.cc:145] Difference at 673: 0, expected 14.3019
E0000 00:00:1748042237.845237 847441 buffer_comparator.cc:145] Difference at 674: 0, expected 15.5573
E0000 00:00:1748042237.845240 847441 buffer_comparator.cc:145] Difference at 675: 0, expected 14.6242
E0000 00:00:1748042237.845243 847441 buffer_comparator.cc:145] Difference at 676: 0, expected 14.8486
E0000 00:00:1748042237.845248 847441 buffer_comparator.cc:145] Difference at 677: 0, expected 14.7699
E0000 00:00:1748042237.845251 847441 buffer_comparator.cc:145] Difference at 678: 0, expected 15.1617
E0000 00:00:1748042237.845254 847441 buffer_comparator.cc:145] Difference at 679: 0, expected 14.9394
E0000 00:00:1748042237.845257 847441 buffer_comparator.cc:145] Difference at 680: 0, expected 13.4678
E0000 00:00:1748042237.845260 847441 buffer_comparator.cc:145] Difference at 681: 0, expected 16.1851
2025-05-23 23:17:17.845265: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.848159 847441 buffer_comparator.cc:145] Difference at 672: 0, expected 16.0696
E0000 00:00:1748042237.848171 847441 buffer_comparator.cc:145] Difference at 673: 0, expected 14.3019
E0000 00:00:1748042237.848176 847441 buffer_comparator.cc:145] Difference at 674: 0, expected 15.5573
E0000 00:00:1748042237.848179 847441 buffer_comparator.cc:145] Difference at 675: 0, expected 14.6242
E0000 00:00:1748042237.848182 847441 buffer_comparator.cc:145] Difference at 676: 0, expected 14.8486
E0000 00:00:1748042237.848185 847441 buffer_comparator.cc:145] Difference at 677: 0, expected 14.7699
E0000 00:00:1748042237.848188 847441 buffer_comparator.cc:145] Difference at 678: 0, expected 15.1617
E0000 00:00:1748042237.848191 847441 buffer_comparator.cc:145] Difference at 679: 0, expected 14.9394
E0000 00:00:1748042237.848194 847441 buffer_comparator.cc:145] Difference at 680: 0, expected 13.4678
E0000 00:00:1748042237.848197 847441 buffer_comparator.cc:145] Difference at 681: 0, expected 16.1851
2025-05-23 23:17:17.848203: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.851079 847441 buffer_comparator.cc:145] Difference at 688: 0, expected 15.1187
E0000 00:00:1748042237.851091 847441 buffer_comparator.cc:145] Difference at 689: 0, expected 14.6251
E0000 00:00:1748042237.851096 847441 buffer_comparator.cc:145] Difference at 690: 0, expected 14.2005
E0000 00:00:1748042237.851099 847441 buffer_comparator.cc:145] Difference at 691: 0, expected 15.1561
E0000 00:00:1748042237.851102 847441 buffer_comparator.cc:145] Difference at 692: 0, expected 15.4235
E0000 00:00:1748042237.851105 847441 buffer_comparator.cc:145] Difference at 693: 0, expected 14.1331
E0000 00:00:1748042237.851108 847441 buffer_comparator.cc:145] Difference at 694: 0, expected 14.4063
E0000 00:00:1748042237.851112 847441 buffer_comparator.cc:145] Difference at 695: 0, expected 14.0259
E0000 00:00:1748042237.851115 847441 buffer_comparator.cc:145] Difference at 696: 0, expected 15.0279
E0000 00:00:1748042237.851118 847441 buffer_comparator.cc:145] Difference at 729: 0, expected 14.5946
2025-05-23 23:17:17.851123: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.854005 847441 buffer_comparator.cc:145] Difference at 688: 0, expected 15.1187
E0000 00:00:1748042237.854017 847441 buffer_comparator.cc:145] Difference at 689: 0, expected 14.6251
E0000 00:00:1748042237.854021 847441 buffer_comparator.cc:145] Difference at 690: 0, expected 14.2005
E0000 00:00:1748042237.854025 847441 buffer_comparator.cc:145] Difference at 691: 0, expected 15.1561
E0000 00:00:1748042237.854028 847441 buffer_comparator.cc:145] Difference at 692: 0, expected 15.4235
E0000 00:00:1748042237.854031 847441 buffer_comparator.cc:145] Difference at 693: 0, expected 14.1331
E0000 00:00:1748042237.854034 847441 buffer_comparator.cc:145] Difference at 694: 0, expected 14.4063
E0000 00:00:1748042237.854037 847441 buffer_comparator.cc:145] Difference at 695: 0, expected 14.0259
E0000 00:00:1748042237.854040 847441 buffer_comparator.cc:145] Difference at 696: 0, expected 15.0279
E0000 00:00:1748042237.854045 847441 buffer_comparator.cc:145] Difference at 729: 0, expected 14.5946
2025-05-23 23:17:17.854050: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.869436 847441 buffer_comparator.cc:145] Difference at 16: -nan, expected 29.4863
E0000 00:00:1748042237.869474 847441 buffer_comparator.cc:145] Difference at 17: -nan, expected 25.4275
E0000 00:00:1748042237.869481 847441 buffer_comparator.cc:145] Difference at 18: -nan, expected 29.498
E0000 00:00:1748042237.869485 847441 buffer_comparator.cc:145] Difference at 19: -nan, expected 24.9024
E0000 00:00:1748042237.869488 847441 buffer_comparator.cc:145] Difference at 20: -nan, expected 31.8883
E0000 00:00:1748042237.869491 847441 buffer_comparator.cc:145] Difference at 21: -nan, expected 30.5795
E0000 00:00:1748042237.869494 847441 buffer_comparator.cc:145] Difference at 22: -nan, expected 26.1755
E0000 00:00:1748042237.869497 847441 buffer_comparator.cc:145] Difference at 23: -nan, expected 30.0282
E0000 00:00:1748042237.869500 847441 buffer_comparator.cc:145] Difference at 24: -nan, expected 25.7237
E0000 00:00:1748042237.869503 847441 buffer_comparator.cc:145] Difference at 25: -nan, expected 25.7191
2025-05-23 23:17:17.869511: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.872418 847441 buffer_comparator.cc:145] Difference at 16: -nan, expected 29.4863
E0000 00:00:1748042237.872434 847441 buffer_comparator.cc:145] Difference at 17: -nan, expected 25.4275
E0000 00:00:1748042237.872439 847441 buffer_comparator.cc:145] Difference at 18: -nan, expected 29.498
E0000 00:00:1748042237.872442 847441 buffer_comparator.cc:145] Difference at 19: -nan, expected 24.9024
E0000 00:00:1748042237.872445 847441 buffer_comparator.cc:145] Difference at 20: -nan, expected 31.8883
E0000 00:00:1748042237.872448 847441 buffer_comparator.cc:145] Difference at 21: -nan, expected 30.5795
E0000 00:00:1748042237.872451 847441 buffer_comparator.cc:145] Difference at 22: -nan, expected 26.1755
E0000 00:00:1748042237.872454 847441 buffer_comparator.cc:145] Difference at 23: -nan, expected 30.0282
E0000 00:00:1748042237.872457 847441 buffer_comparator.cc:145] Difference at 24: -nan, expected 25.7237
E0000 00:00:1748042237.872460 847441 buffer_comparator.cc:145] Difference at 25: -nan, expected 25.7191
2025-05-23 23:17:17.872466: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.875352 847441 buffer_comparator.cc:145] Difference at 512: -nan, expected 13.9275
E0000 00:00:1748042237.875367 847441 buffer_comparator.cc:145] Difference at 513: -nan, expected 12.9447
E0000 00:00:1748042237.875372 847441 buffer_comparator.cc:145] Difference at 514: -nan, expected 13.899
E0000 00:00:1748042237.875375 847441 buffer_comparator.cc:145] Difference at 515: -nan, expected 14.1578
E0000 00:00:1748042237.875378 847441 buffer_comparator.cc:145] Difference at 516: -nan, expected 15.4892
E0000 00:00:1748042237.875381 847441 buffer_comparator.cc:145] Difference at 517: -nan, expected 16.545
E0000 00:00:1748042237.875384 847441 buffer_comparator.cc:145] Difference at 518: -nan, expected 17.8581
E0000 00:00:1748042237.875387 847441 buffer_comparator.cc:145] Difference at 519: -nan, expected 13.0536
E0000 00:00:1748042237.875390 847441 buffer_comparator.cc:145] Difference at 520: -nan, expected 16.1329
E0000 00:00:1748042237.875393 847441 buffer_comparator.cc:145] Difference at 521: -nan, expected 14.5245
2025-05-23 23:17:17.875398: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.878310 847441 buffer_comparator.cc:145] Difference at 528: -nan, expected 17.5032
E0000 00:00:1748042237.878323 847441 buffer_comparator.cc:145] Difference at 529: -nan, expected 15.1785
E0000 00:00:1748042237.878327 847441 buffer_comparator.cc:145] Difference at 530: -nan, expected 15.9473
E0000 00:00:1748042237.878330 847441 buffer_comparator.cc:145] Difference at 531: -nan, expected 14.437
E0000 00:00:1748042237.878333 847441 buffer_comparator.cc:145] Difference at 532: -nan, expected 17.9637
E0000 00:00:1748042237.878336 847441 buffer_comparator.cc:145] Difference at 533: -nan, expected 17.3157
E0000 00:00:1748042237.878339 847441 buffer_comparator.cc:145] Difference at 534: -nan, expected 15.7802
E0000 00:00:1748042237.878342 847441 buffer_comparator.cc:145] Difference at 535: -nan, expected 17.6887
E0000 00:00:1748042237.878345 847441 buffer_comparator.cc:145] Difference at 536: -nan, expected 15.1881
E0000 00:00:1748042237.878348 847441 buffer_comparator.cc:145] Difference at 537: -nan, expected 14.4224
2025-05-23 23:17:17.878352: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.881221 847441 buffer_comparator.cc:145] Difference at 528: -nan, expected 17.5032
E0000 00:00:1748042237.881233 847441 buffer_comparator.cc:145] Difference at 529: -nan, expected 15.1785
E0000 00:00:1748042237.881238 847441 buffer_comparator.cc:145] Difference at 530: -nan, expected 15.9473
E0000 00:00:1748042237.881241 847441 buffer_comparator.cc:145] Difference at 531: -nan, expected 14.437
E0000 00:00:1748042237.881244 847441 buffer_comparator.cc:145] Difference at 532: -nan, expected 17.9637
E0000 00:00:1748042237.881247 847441 buffer_comparator.cc:145] Difference at 533: -nan, expected 17.3157
E0000 00:00:1748042237.881250 847441 buffer_comparator.cc:145] Difference at 534: -nan, expected 15.7802
E0000 00:00:1748042237.881253 847441 buffer_comparator.cc:145] Difference at 535: -nan, expected 17.6887
E0000 00:00:1748042237.881256 847441 buffer_comparator.cc:145] Difference at 536: -nan, expected 15.1881
E0000 00:00:1748042237.881259 847441 buffer_comparator.cc:145] Difference at 537: -nan, expected 14.4224
2025-05-23 23:17:17.881263: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.884152 847441 buffer_comparator.cc:145] Difference at 528: -nan, expected 17.5032
E0000 00:00:1748042237.884164 847441 buffer_comparator.cc:145] Difference at 529: -nan, expected 15.1785
E0000 00:00:1748042237.884168 847441 buffer_comparator.cc:145] Difference at 530: -nan, expected 15.9473
E0000 00:00:1748042237.884171 847441 buffer_comparator.cc:145] Difference at 531: -nan, expected 14.437
E0000 00:00:1748042237.884174 847441 buffer_comparator.cc:145] Difference at 532: -nan, expected 17.9637
E0000 00:00:1748042237.884177 847441 buffer_comparator.cc:145] Difference at 533: -nan, expected 17.3157
E0000 00:00:1748042237.884180 847441 buffer_comparator.cc:145] Difference at 534: -nan, expected 15.7802
E0000 00:00:1748042237.884183 847441 buffer_comparator.cc:145] Difference at 535: -nan, expected 17.6887
E0000 00:00:1748042237.884186 847441 buffer_comparator.cc:145] Difference at 536: -nan, expected 15.1881
E0000 00:00:1748042237.884189 847441 buffer_comparator.cc:145] Difference at 537: -nan, expected 14.4224
2025-05-23 23:17:17.884194: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.910001 847441 buffer_comparator.cc:145] Difference at 16: -nan, expected 11.328
E0000 00:00:1748042237.910045 847441 buffer_comparator.cc:145] Difference at 17: -nan, expected 8.55983
E0000 00:00:1748042237.910056 847441 buffer_comparator.cc:145] Difference at 18: -nan, expected 10.4588
E0000 00:00:1748042237.910059 847441 buffer_comparator.cc:145] Difference at 19: -nan, expected 8.81169
E0000 00:00:1748042237.910062 847441 buffer_comparator.cc:145] Difference at 20: -nan, expected 8.98138
E0000 00:00:1748042237.910065 847441 buffer_comparator.cc:145] Difference at 21: -nan, expected 9.49466
E0000 00:00:1748042237.910068 847441 buffer_comparator.cc:145] Difference at 22: -nan, expected 8.4604
E0000 00:00:1748042237.910071 847441 buffer_comparator.cc:145] Difference at 23: -nan, expected 9.78691
E0000 00:00:1748042237.910073 847441 buffer_comparator.cc:145] Difference at 24: -nan, expected 8.15491
E0000 00:00:1748042237.910076 847441 buffer_comparator.cc:145] Difference at 25: -nan, expected 13.0125
2025-05-23 23:17:17.910086: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.912374 847441 buffer_comparator.cc:145] Difference at 16: -nan, expected 11.328
E0000 00:00:1748042237.912391 847441 buffer_comparator.cc:145] Difference at 17: -nan, expected 8.55983
E0000 00:00:1748042237.912395 847441 buffer_comparator.cc:145] Difference at 18: -nan, expected 10.4588
E0000 00:00:1748042237.912398 847441 buffer_comparator.cc:145] Difference at 19: -nan, expected 8.81169
E0000 00:00:1748042237.912401 847441 buffer_comparator.cc:145] Difference at 20: -nan, expected 8.98138
E0000 00:00:1748042237.912404 847441 buffer_comparator.cc:145] Difference at 21: -nan, expected 9.49466
E0000 00:00:1748042237.912407 847441 buffer_comparator.cc:145] Difference at 22: -nan, expected 8.4604
E0000 00:00:1748042237.912410 847441 buffer_comparator.cc:145] Difference at 23: -nan, expected 9.78691
E0000 00:00:1748042237.912412 847441 buffer_comparator.cc:145] Difference at 24: -nan, expected 8.15491
E0000 00:00:1748042237.912415 847441 buffer_comparator.cc:145] Difference at 25: -nan, expected 13.0125
2025-05-23 23:17:17.912420: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.914516 847441 buffer_comparator.cc:145] Difference at 656: -nan, expected 8.69665
E0000 00:00:1748042237.914528 847441 buffer_comparator.cc:145] Difference at 657: -nan, expected 7.68202
E0000 00:00:1748042237.914532 847441 buffer_comparator.cc:145] Difference at 658: -nan, expected 7.88703
E0000 00:00:1748042237.914535 847441 buffer_comparator.cc:145] Difference at 659: -nan, expected 7.16689
E0000 00:00:1748042237.914538 847441 buffer_comparator.cc:145] Difference at 660: -nan, expected 6.63868
E0000 00:00:1748042237.914541 847441 buffer_comparator.cc:145] Difference at 661: -nan, expected 8.39542
E0000 00:00:1748042237.914544 847441 buffer_comparator.cc:145] Difference at 662: -nan, expected 7.00635
E0000 00:00:1748042237.914547 847441 buffer_comparator.cc:145] Difference at 663: -nan, expected 7.06674
E0000 00:00:1748042237.914549 847441 buffer_comparator.cc:145] Difference at 664: -nan, expected 6.11613
E0000 00:00:1748042237.914552 847441 buffer_comparator.cc:145] Difference at 665: -nan, expected 8.63651
2025-05-23 23:17:17.914557: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.916639 847441 buffer_comparator.cc:145] Difference at 672: -nan, expected 8.61244
E0000 00:00:1748042237.916651 847441 buffer_comparator.cc:145] Difference at 673: -nan, expected 6.1493
E0000 00:00:1748042237.916655 847441 buffer_comparator.cc:145] Difference at 674: -nan, expected 8.90756
E0000 00:00:1748042237.916658 847441 buffer_comparator.cc:145] Difference at 675: -nan, expected 7.1184
E0000 00:00:1748042237.916661 847441 buffer_comparator.cc:145] Difference at 676: -nan, expected 8.03527
E0000 00:00:1748042237.916665 847441 buffer_comparator.cc:145] Difference at 677: -nan, expected 7.44864
E0000 00:00:1748042237.916668 847441 buffer_comparator.cc:145] Difference at 678: -nan, expected 7.35203
E0000 00:00:1748042237.916671 847441 buffer_comparator.cc:145] Difference at 679: -nan, expected 7.89603
E0000 00:00:1748042237.916674 847441 buffer_comparator.cc:145] Difference at 680: -nan, expected 7.3266
E0000 00:00:1748042237.916676 847441 buffer_comparator.cc:145] Difference at 681: -nan, expected 9.7807
2025-05-23 23:17:17.916681: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.918767 847441 buffer_comparator.cc:145] Difference at 672: -nan, expected 8.61244
E0000 00:00:1748042237.918780 847441 buffer_comparator.cc:145] Difference at 673: -nan, expected 6.1493
E0000 00:00:1748042237.918784 847441 buffer_comparator.cc:145] Difference at 674: -nan, expected 8.90756
E0000 00:00:1748042237.918787 847441 buffer_comparator.cc:145] Difference at 675: -nan, expected 7.1184
E0000 00:00:1748042237.918789 847441 buffer_comparator.cc:145] Difference at 676: -nan, expected 8.03527
E0000 00:00:1748042237.918792 847441 buffer_comparator.cc:145] Difference at 677: -nan, expected 7.44864
E0000 00:00:1748042237.918795 847441 buffer_comparator.cc:145] Difference at 678: -nan, expected 7.35203
E0000 00:00:1748042237.918798 847441 buffer_comparator.cc:145] Difference at 679: -nan, expected 7.89603
E0000 00:00:1748042237.918801 847441 buffer_comparator.cc:145] Difference at 680: -nan, expected 7.3266
E0000 00:00:1748042237.918803 847441 buffer_comparator.cc:145] Difference at 681: -nan, expected 9.7807
2025-05-23 23:17:17.918808: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.920906 847441 buffer_comparator.cc:145] Difference at 688: -nan, expected 7.86868
E0000 00:00:1748042237.920918 847441 buffer_comparator.cc:145] Difference at 689: -nan, expected 7.33715
E0000 00:00:1748042237.920922 847441 buffer_comparator.cc:145] Difference at 690: -nan, expected 6.05665
E0000 00:00:1748042237.920925 847441 buffer_comparator.cc:145] Difference at 691: -nan, expected 7.16547
E0000 00:00:1748042237.920928 847441 buffer_comparator.cc:145] Difference at 692: -nan, expected 8.27916
E0000 00:00:1748042237.920931 847441 buffer_comparator.cc:145] Difference at 693: -nan, expected 5.80258
E0000 00:00:1748042237.920934 847441 buffer_comparator.cc:145] Difference at 694: -nan, expected 6.06621
E0000 00:00:1748042237.920936 847441 buffer_comparator.cc:145] Difference at 695: -nan, expected 7.00273
E0000 00:00:1748042237.920939 847441 buffer_comparator.cc:145] Difference at 696: -nan, expected 7.92525
E0000 00:00:1748042237.920942 847441 buffer_comparator.cc:145] Difference at 729: -nan, expected 7.66068
2025-05-23 23:17:17.920947: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
E0000 00:00:1748042237.923032 847441 buffer_comparator.cc:145] Difference at 688: -nan, expected 7.86868
E0000 00:00:1748042237.923044 847441 buffer_comparator.cc:145] Difference at 689: -nan, expected 7.33715
E0000 00:00:1748042237.923048 847441 buffer_comparator.cc:145] Difference at 690: -nan, expected 6.05665
E0000 00:00:1748042237.923051 847441 buffer_comparator.cc:145] Difference at 691: -nan, expected 7.16547
E0000 00:00:1748042237.923054 847441 buffer_comparator.cc:145] Difference at 692: -nan, expected 8.27916
E0000 00:00:1748042237.923057 847441 buffer_comparator.cc:145] Difference at 693: -nan, expected 5.80258
E0000 00:00:1748042237.923060 847441 buffer_comparator.cc:145] Difference at 694: -nan, expected 6.06621
E0000 00:00:1748042237.923063 847441 buffer_comparator.cc:145] Difference at 695: -nan, expected 7.00273
E0000 00:00:1748042237.923067 847441 buffer_comparator.cc:145] Difference at 696: -nan, expected 7.92525
E0000 00:00:1748042237.923070 847441 buffer_comparator.cc:145] Difference at 729: -nan, expected 7.66068
2025-05-23 23:17:17.923074: E external/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc:1179] Results do not match the reference. This is likely a bug/unexpected loss of precision.
Iteration: 0001 Loss: 2.08073235
Iteration: 0101 Loss: 0.142443746
Iteration: 0201 Loss: 0.00498719513
Iteration: 0301 Loss: 0.00116170431
Iteration: 0401 Loss: 0.000497820089
Iteration: 0501 Loss: 0.00027494994
Iteration: 0601 Loss: 0.000180605697
Iteration: 0701 Loss: 0.000201430521
Iteration: 0801 Loss: 0.000379697973
Iteration: 0901 Loss: 0.000106757798
Iteration: 1000 Loss: 0.000231371887
Training with Optimization.jl
If you are coming from the SciML ecosystem and want to use Optimization.jl, please refer to the Optimization.jl Tutorial.
Additional Packages
LuxDL
hosts various packages that provide additional functionality for Lux.jl. All packages mentioned in this documentation are available via the Julia General Registry.
You can install all those packages via import Pkg; Pkg.add(<package name>)
.
XLA (CPU/GPU/TPU) Support
Lux.jl supports XLA compilation for CPU, GPU, and TPU using Reactant.jl.
GPU Support
GPU Support for Lux.jl requires loading additional packages:
LuxCUDA.jl
for CUDA support.AMDGPU.jl
for AMDGPU support.Metal.jl
for Apple Metal support.oneAPI.jl
for oneAPI support.