Skip to content

Getting Started

Installation

Install Julia v1.10 or above. Lux.jl is available through the Julia package manager. You can enter it by pressing ] in the REPL and then typing

julia
pkg> add Lux

Alternatively, you can also do

julia
import Pkg; Pkg.add("Lux")

Quickstart

Pre-Requisites

You need to install Optimisers and Zygote if not done already. Pkg.add(["Optimisers", "Zygote"])

julia
using Lux, Random, Optimisers, Zygote
# using LuxCUDA, LuxAMDGPU, Metal # Optional packages for GPU support

We take randomness very seriously

julia
# Seeding
rng = Random.default_rng()
Random.seed!(rng, 0)
Random.TaskLocalRNG()

Build the model

julia
# Construct the layer
model = Chain(Dense(128, 256, tanh), Chain(Dense(256, 1, tanh), Dense(1, 10)))
Chain(
    layer_1 = Dense(128 => 256, tanh_fast),  # 33_024 parameters
    layer_2 = Dense(256 => 1, tanh_fast),  # 257 parameters
    layer_3 = Dense(1 => 10),           # 20 parameters
)         # Total: 33_301 parameters,
          #        plus 0 states.

Models don't hold parameters and states so initialize them. From there on, we just use our standard AD and Optimisers API.

julia
# Get the device determined by Lux
device = gpu_device()

# Parameter and State Variables
ps, st = Lux.setup(rng, model) .|> device

# Dummy Input
x = rand(rng, Float32, 128, 2) |> device

# Run the model
y, st = Lux.apply(model, x, ps, st)

# Gradients
## Pullback API to capture change in state
(l, st_), pb = pullback(p -> Lux.apply(model, x, p, st), ps)
gs = pb((one.(l), nothing))[1]

# Optimization
st_opt = Optimisers.setup(Adam(0.0001f0), ps)
st_opt, ps = Optimisers.update(st_opt, ps, gs)
((layer_1 = (weight = Leaf(Adam(0.0001, (0.9, 0.999), 1.0e-8), (Float32[0.00313608 0.00806096 … 0.00476192 0.00732118; -0.00447309 -0.0119719 … -0.00822211 -0.0110335; … ; -0.00294453 -0.00749935 … -0.00426221 -0.00678769; 0.000750543 0.00195163 … 0.00120731 0.00178011], Float32[9.83485f-7 6.49782f-6 … 2.26756f-6 5.3599f-6; 2.00083f-6 1.43324f-5 … 6.76022f-6 1.21738f-5; … ; 8.67016f-7 5.62395f-6 … 1.81662f-6 4.60721f-6; 5.63307f-8 3.80882f-7 … 1.45758f-7 3.16876f-7], (0.81, 0.998001))), bias = Leaf(Adam(0.0001, (0.9, 0.999), 1.0e-8), (Float32[0.00954525; -0.0146331; … ; -0.00881351; 0.00233261;;], Float32[9.11106f-6; 2.14125f-5; … ; 7.76769f-6; 5.44098f-7;;], (0.81, 0.998001)))), layer_2 = (weight = Leaf(Adam(0.0001, (0.9, 0.999), 1.0e-8), (Float32[-0.0104967 0.0714637 … -0.0224641 0.108277], Float32[1.10179f-5 0.000510699 … 5.04628f-5 0.00117238], (0.81, 0.998001))), bias = Leaf(Adam(0.0001, (0.9, 0.999), 1.0e-8), (Float32[0.178909;;], Float32[0.0032008;;], (0.81, 0.998001)))), layer_3 = (weight = Leaf(Adam(0.0001, (0.9, 0.999), 1.0e-8), (Float32[-0.105128; -0.105128; … ; -0.105128; -0.105128;;], Float32[0.00110518; 0.00110518; … ; 0.00110518; 0.00110518;;], (0.81, 0.998001))), bias = Leaf(Adam(0.0001, (0.9, 0.999), 1.0e-8), (Float32[0.2; 0.2; … ; 0.2; 0.2;;], Float32[0.00399995; 0.00399995; … ; 0.00399995; 0.00399995;;], (0.81, 0.998001))))), (layer_1 = (weight = Float32[-0.11044693 0.10963185 … 0.097855344 -0.009167461; -0.0110904 0.07588978 … -0.03180492 0.088967875; … ; 0.01864451 -0.034903362 … -0.016194405 0.019176451; -0.09216565 -0.047490627 … -0.08869007 0.009417342], bias = Float32[-9.999999f-5; 9.999998f-5; … ; 9.999999f-5; -9.9999954f-5;;]), layer_2 = (weight = Float32[0.05391791 -0.103956826 … -0.050862882 0.020512676], bias = Float32[-0.0001;;]), layer_3 = (weight = Float32[-0.6546853; 0.6101978; … ; 0.41120994; 0.5494141;;], bias = Float32[-0.0001; -0.0001; … ; -0.0001; -0.0001;;])))

Defining Custom Layers

julia
using Lux, Random, Optimisers, Zygote
# using LuxCUDA, LuxAMDGPU, Metal # Optional packages for GPU support
import Lux.Experimental: @compact

We will define a custom MLP using the @compact macro. The macro takes in a list of parameters, layers and states, and a function defining the forward pass of the neural network.

julia
n_in = 1
n_out = 1
nlayers = 3

model = @compact(w1=Dense(n_in, 128),
    w2=[Dense(128, 128) for i in 1:nlayers],
    w3=Dense(128, n_out),
    act=relu) do x
    embed = act(w1(x))
    for w in w2
        embed = act(w(embed))
    end
    out = w3(embed)
    return out
end
@compact(
    w1 = Dense(1 => 128),               # 256 parameters
    w2 = NamedTuple(
        1 = Dense(128 => 128),          # 16_512 parameters
        2 = Dense(128 => 128),          # 16_512 parameters
        3 = Dense(128 => 128),          # 16_512 parameters
    ),
    w3 = Dense(128 => 1),               # 129 parameters
    act = relu,
) do x 
    embed = act(w1(x))
    for w = w2
        embed = act(w(embed))
    end
    out = w3(embed)
    return out
end       # Total: 49_921 parameters,
          #        plus 1 states.

We can initialize the model and train it with the same code as before!

julia
ps, st = Lux.setup(Xoshiro(0), model)

model(randn(n_in, 32), ps, st)  # 1×32 Matrix as output.

x_data = collect(-2.0f0:0.1f0:2.0f0)'
y_data = 2 .* x_data .- x_data .^ 3
st_opt = Optimisers.setup(Adam(), ps)

for epoch in 1:1000
    global st  # Put this in a function in real use-cases
    (loss, st), pb = Zygote.pullback(ps) do p
        y, st_ = model(x_data, p, st)
        return sum(abs2, y .- y_data), st_
    end
    gs = only(pb((one(loss), nothing)))
    epoch % 100 == 1 && println("Epoch: $(epoch) | Loss: $(loss)")
    Optimisers.update!(st_opt, ps, gs)
end
Epoch: 1 | Loss: 84.32512
Epoch: 101 | Loss: 0.08861052
Epoch: 201 | Loss: 0.007037298
Epoch: 301 | Loss: 0.005391656
Epoch: 401 | Loss: 0.014058021
Epoch: 501 | Loss: 0.0022117028
Epoch: 601 | Loss: 0.0015865607
Epoch: 701 | Loss: 0.21984956
Epoch: 801 | Loss: 0.00019668281
Epoch: 901 | Loss: 0.0018975141

Additional Packages

LuxDL hosts various packages that provide additional functionality for Lux.jl. All packages mentioned in this documentation are available via the Julia General Registry.

You can install all those packages via import Pkg; Pkg.add(<package name>).

GPU Support

GPU Support for Lux.jl requires loading additional packages: