Freezing Model Parameters
Warning
API for freezing parameters should be considered experimental at this point.
In this manual entry, we will go over how to freeze certain parameters in a model.
Freezing Layers of a Particular Kind
To freeze a particular kind of layer, let's say Dense
in the following example. We can use Lux.Experimental.@layer_map
and freeze layers if they are of type Dense
.
using Lux, Random
rng = Random.default_rng()
Random.seed!(rng, 0)
model = Chain(Dense(3, 4), Chain(Dense(4, 4), Dropout(0.5f0), BatchNorm(4)),
Dense(4, 1); disable_optimizations=true)
ps, st = Lux.setup(rng, model)
x = randn(rng, Float32, 3, 2)
model(x, ps, st)
function freeze_dense(d::Lux.Dense, ps, st, ::String)
return Lux.freeze(d, ps, st, (:weight, :bias))
end
freeze_dense(l, ps, st, name) = (l, ps, st)
model_frozen, ps_frozen, st_frozen = Lux.Experimental.@layer_map freeze_dense model ps st
model_frozen(x, ps_frozen, st_frozen)
(Float32[1.6873631 -1.6873631], (layer_1 = (frozen_params = (weight = Float32[-0.026350189 -0.5554656 -0.35653266; -0.17461072 0.6705545 0.29924855; -0.8935247 -0.42453378 -0.3020351; -0.7988979 -0.7666331 -0.7104237], bias = Float32[0.0; 0.0; 0.0; 0.0;;]), states = NamedTuple()), layer_2 = (layer_1 = (frozen_params = (weight = Float32[-0.47289538 -0.680748 0.1764085 0.34383082; 0.42747158 -0.13819042 -0.109261915 -0.6143286; -0.35790488 -0.20881107 0.70390546 0.48137343; 0.82561636 0.38187847 0.05779423 -0.35181466], bias = Float32[0.0; 0.0; 0.0; 0.0;;]), states = NamedTuple()), layer_2 = (rng = Random.TaskLocalRNG(), training = Val{true}()), layer_3 = (running_mean = Float32[0.04584409, 0.03484953, 0.0, 0.0074841487], running_var = Float32[0.9420336, 0.92428976, 0.9, 0.90112025], training = Val{true}())), layer_3 = (frozen_params = (weight = Float32[0.3981135 0.45468387 -0.07694905 0.8353388], bias = Float32[0.0;;]), states = NamedTuple())))
Freezing by Layer Name
When the function in layer_map
is called, the 4th argument is the name of the layer. For example, if you want to freeze the 1st layer inside the inner Chain. The name for this would be <model>.layer_2.layer_1
.
function freeze_by_name(d, ps, st, name::String)
if name == "model.layer_2.layer_1"
return Lux.Experimental.freeze(d, ps, st, (:weight, :bias))
else
return d, ps, st
end
end
function freeze_dense(d::Dense, ps, st, ::String)
return Lux.Experimental.freeze(d, ps, st, (:weight, :bias))
end
freeze_dense(l, ps, st, _) = (l, ps, st)
Freezing Part of the Parameters
Instead of freezing all the parameters, we can simply specify (:weight,)
to freeze only the weight
parameter while training the bias
parameter.
function freeze_by_name(d, ps, st, name::String)
if name == "model.layer_2.layer_1"
return Lux.freeze(d, ps, st, (:weight,))
else
return d, ps, st
end
end
function freeze_by_name(d, ps, st, name::String)
if name == "model.layer_2.layer_1"
return Lux.freeze(d, ps, st, (:weight, :bias))
else
return d, ps, st
end
end
Freezing Part of a Chain
Starting v0.4.22
, we can directly index into a Chain
. So freezing a part of a Chain
, is extremely easy.
using Lux, Random
rng = Random.default_rng()
Random.seed!(rng, 0)
model = Chain(Dense(3, 4), Dense(4, 4), Dropout(0.5f0), BatchNorm(4), Dense(4, 1))
model_frozen = Chain(model[1:2], Lux.freeze(model[3:4]), model[5])
ps, st = Lux.setup(rng, model_frozen)
x = randn(rng, Float32, 3, 2)
model_frozen(x, ps, st)
(Float32[-0.53158027 0.53158027], (layer_1 = NamedTuple(), layer_2 = NamedTuple(), layer_3 = (frozen_params = (layer_3 = NamedTuple(), layer_4 = (scale = Float32[1.0, 1.0, 1.0, 1.0], bias = Float32[0.0, 0.0, 0.0, 0.0])), states = (layer_3 = (rng = Random.TaskLocalRNG(), training = Val{true}()), layer_4 = (running_mean = Float32[0.0, 0.021013658, -0.057823665, 0.0], running_var = Float32[0.9, 0.9088315, 0.9668715, 0.9], training = Val{true}()))), layer_4 = NamedTuple()))