Training a HyperNetwork on MNIST and FashionMNIST
Package Imports
julia
using Lux, ADTypes, ComponentArrays, AMDGPU, LuxCUDA, MLDatasets, MLUtils, OneHotArrays,
Optimisers, Printf, Random, Setfield, Statistics, Zygote
CUDA.allowscalar(false)
Loading Datasets
julia
function load_dataset(::Type{dset}, n_train::Int, n_eval::Int, batchsize::Int) where {dset}
imgs, labels = dset(:train)[1:n_train]
x_train, y_train = reshape(imgs, 28, 28, 1, n_train), onehotbatch(labels, 0:9)
imgs, labels = dset(:test)[1:n_eval]
x_test, y_test = reshape(imgs, 28, 28, 1, n_eval), onehotbatch(labels, 0:9)
return (DataLoader((x_train, y_train); batchsize=min(batchsize, n_train), shuffle=true),
DataLoader((x_test, y_test); batchsize=min(batchsize, n_eval), shuffle=false))
end
function load_datasets(n_train=1024, n_eval=32, batchsize=256)
return load_dataset.((MNIST, FashionMNIST), n_train, n_eval, batchsize)
end
load_datasets (generic function with 4 methods)
Implement a HyperNet Layer
julia
function HyperNet(weight_generator::Lux.AbstractExplicitLayer,
core_network::Lux.AbstractExplicitLayer)
ca_axes = Lux.initialparameters(Random.default_rng(), core_network) |>
ComponentArray |>
getaxes
return @compact(; ca_axes, weight_generator, core_network, dispatch=:HyperNet) do (x, y)
# Generate the weights
ps_new = ComponentArray(vec(weight_generator(x)), ca_axes)
@return core_network(y, ps_new)
end
end
HyperNet (generic function with 1 method)
Defining functions on the CompactLuxLayer requires some understanding of how the layer is structured, as such we don't recommend doing it unless you are familiar with the internals. In this case, we simply write it to ignore the initialization of the core_network
parameters.
julia
function Lux.initialparameters(rng::AbstractRNG, hn::CompactLuxLayer{:HyperNet})
return (; weight_generator=Lux.initialparameters(rng, hn.layers.weight_generator),)
end
Create and Initialize the HyperNet
julia
function create_model()
# Doesn't need to be a MLP can have any Lux Layer
core_network = Chain(FlattenLayer(), Dense(784, 256, relu), Dense(256, 10))
weight_generator = Chain(Embedding(2 => 32), Dense(32, 64, relu),
Dense(64, Lux.parameterlength(core_network)))
model = HyperNet(weight_generator, core_network)
return model
end
create_model (generic function with 1 method)
Define Utility Functions
julia
const loss = CrossEntropyLoss(; logits=Val(true))
function accuracy(model, ps, st, dataloader, data_idx, gdev=gpu_device())
total_correct, total = 0, 0
st = Lux.testmode(st)
cpu_dev = cpu_device()
for (x, y) in dataloader
x = x |> gdev
y = y |> gdev
target_class = onecold(cpu_dev(y))
predicted_class = onecold(cpu_dev(model((data_idx, x), ps, st)[1]))
total_correct += sum(target_class .== predicted_class)
total += length(target_class)
end
return total_correct / total
end
accuracy (generic function with 2 methods)
Training
julia
function train()
model = create_model()
dataloaders = load_datasets()
dev = gpu_device()
rng = Xoshiro(0)
train_state = Training.TrainState(rng, model, Adam(3.0f-4); transform_variables=dev)
### Lets train the model
nepochs = 10
for epoch in 1:nepochs, data_idx in 1:2
train_dataloader, test_dataloader = dataloaders[data_idx]
stime = time()
for (x, y) in train_dataloader
x = x |> dev
y = y |> dev
(_, _, _, train_state) = Training.single_train_step!(
AutoZygote(), loss, ((data_idx, x), y), train_state)
end
ttime = time() - stime
train_acc = round(
accuracy(model, train_state.parameters, train_state.states,
train_dataloader, data_idx, dev) * 100;
digits=2)
test_acc = round(
accuracy(model, train_state.parameters, train_state.states,
test_dataloader, data_idx, dev) * 100;
digits=2)
data_name = data_idx == 1 ? "MNIST" : "FashionMNIST"
@printf "[%3d/%3d] \t %12s \t Time %.5fs \t Training Accuracy: %.2f%% \t Test \
Accuracy: %.2f%%\n" epoch nepochs data_name ttime train_acc test_acc
end
println()
for data_idx in 1:2
train_dataloader, test_dataloader = dataloaders[data_idx]
train_acc = round(
accuracy(model, train_state.parameters, train_state.states,
train_dataloader, data_idx, dev) * 100;
digits=2)
test_acc = round(
accuracy(model, train_state.parameters, train_state.states,
test_dataloader, data_idx, dev) * 100;
digits=2)
data_name = data_idx == 1 ? "MNIST" : "FashionMNIST"
@printf "[FINAL] \t %12s \t Training Accuracy: %.2f%% \t Test Accuracy: \
%.2f%%\n" data_name train_acc test_acc
end
end
train()
[ 1/ 10] MNIST Time 68.90980s Training Accuracy: 70.80% Test Accuracy: 68.75%
[ 1/ 10] FashionMNIST Time 0.02815s Training Accuracy: 51.46% Test Accuracy: 43.75%
[ 2/ 10] MNIST Time 0.03049s Training Accuracy: 77.15% Test Accuracy: 81.25%
[ 2/ 10] FashionMNIST Time 0.02966s Training Accuracy: 59.18% Test Accuracy: 65.62%
[ 3/ 10] MNIST Time 0.02925s Training Accuracy: 83.69% Test Accuracy: 84.38%
[ 3/ 10] FashionMNIST Time 0.02350s Training Accuracy: 64.26% Test Accuracy: 53.12%
[ 4/ 10] MNIST Time 0.02457s Training Accuracy: 88.38% Test Accuracy: 93.75%
[ 4/ 10] FashionMNIST Time 0.02427s Training Accuracy: 63.38% Test Accuracy: 53.12%
[ 5/ 10] MNIST Time 0.02401s Training Accuracy: 87.21% Test Accuracy: 84.38%
[ 5/ 10] FashionMNIST Time 0.02094s Training Accuracy: 71.00% Test Accuracy: 65.62%
[ 6/ 10] MNIST Time 0.02087s Training Accuracy: 92.48% Test Accuracy: 93.75%
[ 6/ 10] FashionMNIST Time 0.02151s Training Accuracy: 69.82% Test Accuracy: 59.38%
[ 7/ 10] MNIST Time 0.02199s Training Accuracy: 93.95% Test Accuracy: 90.62%
[ 7/ 10] FashionMNIST Time 0.02216s Training Accuracy: 71.29% Test Accuracy: 59.38%
[ 8/ 10] MNIST Time 0.02150s Training Accuracy: 93.16% Test Accuracy: 90.62%
[ 8/ 10] FashionMNIST Time 0.02096s Training Accuracy: 76.86% Test Accuracy: 71.88%
[ 9/ 10] MNIST Time 0.02169s Training Accuracy: 95.12% Test Accuracy: 96.88%
[ 9/ 10] FashionMNIST Time 0.04021s Training Accuracy: 73.44% Test Accuracy: 68.75%
[ 10/ 10] MNIST Time 0.02459s Training Accuracy: 96.88% Test Accuracy: 96.88%
[ 10/ 10] FashionMNIST Time 0.02115s Training Accuracy: 77.83% Test Accuracy: 59.38%
[FINAL] MNIST Training Accuracy: 96.88% Test Accuracy: 96.88%
[FINAL] FashionMNIST Training Accuracy: 77.83% Test Accuracy: 59.38%
Appendix
julia
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(LuxDeviceUtils)
if @isdefined(CUDA) && LuxDeviceUtils.functional(LuxCUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && LuxDeviceUtils.functional(LuxAMDGPUDevice)
println()
AMDGPU.versioninfo()
end
end
Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 48 × AMD EPYC 7402 24-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-15.0.7 (ORCJIT, znver2)
Threads: 4 default, 0 interactive, 2 GC (on 2 virtual cores)
Environment:
JULIA_CPU_THREADS = 2
JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
JULIA_PKG_SERVER =
JULIA_NUM_THREADS = 4
JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0
JULIA_DEBUG = Literate
CUDA runtime 12.5, artifact installation
CUDA driver 12.5
NVIDIA driver 555.42.6
CUDA libraries:
- CUBLAS: 12.5.3
- CURAND: 10.3.6
- CUFFT: 11.2.3
- CUSOLVER: 11.6.3
- CUSPARSE: 12.5.1
- CUPTI: 2024.2.1 (API 23.0.0)
- NVML: 12.0.0+555.42.6
Julia packages:
- CUDA: 5.4.3
- CUDA_Driver_jll: 0.9.2+0
- CUDA_Runtime_jll: 0.14.1+0
Toolchain:
- Julia: 1.10.5
- LLVM: 15.0.7
Environment:
- JULIA_CUDA_HARD_MEMORY_LIMIT: 100%
1 device:
0: NVIDIA A100-PCIE-40GB MIG 1g.5gb (sm_80, 2.232 GiB / 4.750 GiB available)
This page was generated using Literate.jl.