Training a PINN on 2D PDE
In this tutorial we will go over using a PINN to solve 2D PDEs. We will be using the system from NeuralPDE Tutorials. However, we will be using our custom loss function and use nested AD capabilities of Lux.jl.
This is a demonstration of Lux.jl. For serious usecases of PINNs, please refer to the package: NeuralPDE.jl.
Package Imports
using ADTypes, Lux, Optimisers, Zygote, Random, Printf, Statistics, MLUtils, OnlineStats,
CairoMakie
using LuxCUDA
CUDA.allowscalar(false)
const gdev = gpu_device()
const cdev = cpu_device()
(::MLDataDevices.CPUDevice) (generic function with 1 method)
Problem Definition
Since Lux supports efficient nested AD upto 2nd order, we will rewrite the problem with first order derivatives, so that we can compute the gradients of the loss using 2nd order AD.
Define the Neural Networks
All the networks take 3 input variables and output a scalar value. Here, we will define a a wrapper over the 3 networks, so that we can train them using Training.TrainState
.
struct PINN{U, V, W} <: Lux.AbstractLuxContainerLayer{(:u, :v, :w)}
u::U
v::V
w::W
end
function create_mlp(act, hidden_dims)
return Chain(
Dense(3 => hidden_dims, act),
Dense(hidden_dims => hidden_dims, act),
Dense(hidden_dims => hidden_dims, act),
Dense(hidden_dims => 1)
)
end
function PINN(; hidden_dims::Int=32)
return PINN(
create_mlp(tanh, hidden_dims),
create_mlp(tanh, hidden_dims),
create_mlp(tanh, hidden_dims)
)
end
Main.var"##230".PINN
Define the Loss Functions
We will define a custom loss function to compute the loss using 2nd order AD. We will use the following loss function
@views function physics_informed_loss_function(
u::StatefulLuxLayer, v::StatefulLuxLayer, w::StatefulLuxLayer, xyt::AbstractArray)
∂u_∂xyt = only(Zygote.gradient(sum ∘ u, xyt))
∂u_∂x, ∂u_∂y, ∂u_∂t = ∂u_∂xyt[1:1, :], ∂u_∂xyt[2:2, :], ∂u_∂xyt[3:3, :]
∂v_∂x = only(Zygote.gradient(sum ∘ v, xyt))[1:1, :]
v_xyt = v(xyt)
∂w_∂y = only(Zygote.gradient(sum ∘ w, xyt))[2:2, :]
w_xyt = w(xyt)
return (
mean(abs2, ∂u_∂t .- ∂v_∂x .- ∂w_∂y) +
mean(abs2, v_xyt .- ∂u_∂x) +
mean(abs2, w_xyt .- ∂u_∂y)
)
end
physics_informed_loss_function (generic function with 1 method)
Additionally, we need to compute the loss wrt the boundary conditions.
function mse_loss_function(u::StatefulLuxLayer, target::AbstractArray, xyt::AbstractArray)
return MSELoss()(u(xyt), target)
end
function loss_function(model, ps, st, (xyt, target_data, xyt_bc, target_bc))
u_net = StatefulLuxLayer{true}(model.u, ps.u, st.u)
v_net = StatefulLuxLayer{true}(model.v, ps.v, st.v)
w_net = StatefulLuxLayer{true}(model.w, ps.w, st.w)
physics_loss = physics_informed_loss_function(u_net, v_net, w_net, xyt)
data_loss = mse_loss_function(u_net, target_data, xyt)
bc_loss = mse_loss_function(u_net, target_bc, xyt_bc)
loss = physics_loss + data_loss + bc_loss
return (
loss,
(; u=u_net.st, v=v_net.st, w=w_net.st),
(; physics_loss, data_loss, bc_loss)
)
end
loss_function (generic function with 1 method)
Generate the Data
We will generate some random data to train the model on. We will take data on a square spatial and temporal domain
analytical_solution(x, y, t) = @. exp(x + y) * cos(x + y + 4t)
analytical_solution(xyt) = analytical_solution(xyt[1, :], xyt[2, :], xyt[3, :])
begin
grid_len = 16
grid = range(0.0f0, 2.0f0; length=grid_len)
xyt = stack([[elem...] for elem in vec(collect(Iterators.product(grid, grid, grid)))])
target_data = reshape(analytical_solution(xyt), 1, :)
bc_len = 512
x = collect(range(0.0f0, 2.0f0; length=bc_len))
y = collect(range(0.0f0, 2.0f0; length=bc_len))
t = collect(range(0.0f0, 2.0f0; length=bc_len))
xyt_bc = hcat(
stack((x, y, zeros(Float32, bc_len)); dims=1),
stack((zeros(Float32, bc_len), y, t); dims=1),
stack((ones(Float32, bc_len) .* 2, y, t); dims=1),
stack((x, zeros(Float32, bc_len), t); dims=1),
stack((x, ones(Float32, bc_len) .* 2, t); dims=1)
)
target_bc = reshape(analytical_solution(xyt_bc), 1, :)
min_target_bc, max_target_bc = extrema(target_bc)
min_data, max_data = extrema(target_data)
min_pde_val, max_pde_val = min(min_data, min_target_bc), max(max_data, max_target_bc)
xyt = (xyt .- minimum(xyt)) ./ (maximum(xyt) .- minimum(xyt))
xyt_bc = (xyt_bc .- minimum(xyt_bc)) ./ (maximum(xyt_bc) .- minimum(xyt_bc))
target_bc = (target_bc .- min_pde_val) ./ (max_pde_val - min_pde_val)
target_data = (target_data .- min_pde_val) ./ (max_pde_val - min_pde_val)
end
Training
function train_model(xyt, target_data, xyt_bc, target_bc; seed::Int=0,
maxiters::Int=50000, hidden_dims::Int=32)
rng = Random.default_rng()
Random.seed!(rng, seed)
pinn = PINN(; hidden_dims)
ps, st = Lux.setup(rng, pinn) |> gdev
bc_dataloader = DataLoader((xyt_bc, target_bc); batchsize=32, shuffle=true) |> gdev
pde_dataloader = DataLoader((xyt, target_data); batchsize=32, shuffle=true) |> gdev
train_state = Training.TrainState(pinn, ps, st, Adam(0.05f0))
lr = i -> i < 5000 ? 0.05f0 : (i < 10000 ? 0.005f0 : 0.0005f0)
total_loss_tracker, physics_loss_tracker, data_loss_tracker, bc_loss_tracker = ntuple(
_ -> Lag(Float32, 32), 4)
iter = 1
for ((xyt_batch, target_data_batch), (xyt_bc_batch, target_bc_batch)) in zip(
Iterators.cycle(pde_dataloader), Iterators.cycle(bc_dataloader))
Optimisers.adjust!(train_state, lr(iter))
_, loss, stats, train_state = Training.single_train_step!(
AutoZygote(), loss_function, (
xyt_batch, target_data_batch, xyt_bc_batch, target_bc_batch),
train_state)
fit!(total_loss_tracker, loss)
fit!(physics_loss_tracker, stats.physics_loss)
fit!(data_loss_tracker, stats.data_loss)
fit!(bc_loss_tracker, stats.bc_loss)
mean_loss = mean(OnlineStats.value(total_loss_tracker))
mean_physics_loss = mean(OnlineStats.value(physics_loss_tracker))
mean_data_loss = mean(OnlineStats.value(data_loss_tracker))
mean_bc_loss = mean(OnlineStats.value(bc_loss_tracker))
isnan(loss) && throw(ArgumentError("NaN Loss Detected"))
if iter % 500 == 1 || iter == maxiters
@printf "Iteration: [%5d / %5d] \t Loss: %.9f (%.9f) \t Physics Loss: %.9f \
(%.9f) \t Data Loss: %.9f (%.9f) \t BC \
Loss: %.9f (%.9f)\n" iter maxiters loss mean_loss stats.physics_loss mean_physics_loss stats.data_loss mean_data_loss stats.bc_loss mean_bc_loss
end
iter += 1
iter ≥ maxiters && break
end
return StatefulLuxLayer{true}(
pinn, cdev(train_state.parameters), cdev(train_state.states))
end
trained_model = train_model(xyt, target_data, xyt_bc, target_bc)
trained_u = Lux.testmode(StatefulLuxLayer{true}(
trained_model.model.u, trained_model.ps.u, trained_model.st.u))
┌ Warning: `Lag(T, b)` is deprecated. Use `CircBuff(T,b,rev=true)` instead.
│ caller = #6 at 4_PINN2DPDE.md:16 [inlined]
└ @ Core /var/lib/buildkite-agent/builds/gpuci-10/julialang/lux-dot-jl/docs/src/tutorials/intermediate/4_PINN2DPDE.md:16
┌ Warning: `Lag(T, b)` is deprecated. Use `CircBuff(T,b,rev=true)` instead.
│ caller = #6 at 4_PINN2DPDE.md:16 [inlined]
└ @ Core /var/lib/buildkite-agent/builds/gpuci-10/julialang/lux-dot-jl/docs/src/tutorials/intermediate/4_PINN2DPDE.md:16
┌ Warning: `Lag(T, b)` is deprecated. Use `CircBuff(T,b,rev=true)` instead.
│ caller = #6 at 4_PINN2DPDE.md:16 [inlined]
└ @ Core /var/lib/buildkite-agent/builds/gpuci-10/julialang/lux-dot-jl/docs/src/tutorials/intermediate/4_PINN2DPDE.md:16
┌ Warning: `Lag(T, b)` is deprecated. Use `CircBuff(T,b,rev=true)` instead.
│ caller = #6 at 4_PINN2DPDE.md:16 [inlined]
└ @ Core /var/lib/buildkite-agent/builds/gpuci-10/julialang/lux-dot-jl/docs/src/tutorials/intermediate/4_PINN2DPDE.md:16
Iteration: [ 1 / 50000] Loss: 3.159042358 (3.159042358) Physics Loss: 1.982162476 (1.982162476) Data Loss: 0.578374863 (0.578374863) BC Loss: 0.598505080 (0.598505080)
Iteration: [ 501 / 50000] Loss: 0.040918160 (0.025583776) Physics Loss: 0.000391877 (0.000269295) Data Loss: 0.014243508 (0.009196416) BC Loss: 0.026282774 (0.016118063)
Iteration: [ 1001 / 50000] Loss: 0.015340659 (0.025281426) Physics Loss: 0.000071670 (0.000163182) Data Loss: 0.007905648 (0.010876314) BC Loss: 0.007363341 (0.014241929)
Iteration: [ 1501 / 50000] Loss: 0.019567011 (0.026170366) Physics Loss: 0.001279382 (0.001009728) Data Loss: 0.003071612 (0.010452257) BC Loss: 0.015216017 (0.014708381)
Iteration: [ 2001 / 50000] Loss: 0.035556547 (0.027273500) Physics Loss: 0.004061943 (0.001871931) Data Loss: 0.013011228 (0.010586374) BC Loss: 0.018483378 (0.014815190)
Iteration: [ 2501 / 50000] Loss: 0.011505678 (0.022150228) Physics Loss: 0.002304791 (0.001940841) Data Loss: 0.005615299 (0.007885863) BC Loss: 0.003585588 (0.012323526)
Iteration: [ 3001 / 50000] Loss: 0.031768262 (0.029164422) Physics Loss: 0.008404830 (0.003920683) Data Loss: 0.008808360 (0.010936455) BC Loss: 0.014555071 (0.014307282)
Iteration: [ 3501 / 50000] Loss: 0.017645847 (0.042499166) Physics Loss: 0.001848093 (0.001690981) Data Loss: 0.005461216 (0.018073166) BC Loss: 0.010336538 (0.022735020)
Iteration: [ 4001 / 50000] Loss: 0.028128654 (0.027620461) Physics Loss: 0.005112350 (0.002448601) Data Loss: 0.013499700 (0.011073254) BC Loss: 0.009516605 (0.014098606)
Iteration: [ 4501 / 50000] Loss: 0.014340003 (0.033320315) Physics Loss: 0.001292084 (0.004329988) Data Loss: 0.008556721 (0.012002973) BC Loss: 0.004491198 (0.016987354)
Iteration: [ 5001 / 50000] Loss: 0.030331207 (0.041541956) Physics Loss: 0.000723805 (0.002695386) Data Loss: 0.004466736 (0.016228525) BC Loss: 0.025140665 (0.022618050)
Iteration: [ 5501 / 50000] Loss: 0.022293953 (0.021166507) Physics Loss: 0.000554349 (0.000707158) Data Loss: 0.004542338 (0.007950513) BC Loss: 0.017197266 (0.012508835)
Iteration: [ 6001 / 50000] Loss: 0.018723227 (0.020389127) Physics Loss: 0.000442930 (0.000975201) Data Loss: 0.006906096 (0.007273634) BC Loss: 0.011374202 (0.012140292)
Iteration: [ 6501 / 50000] Loss: 0.028305896 (0.020493284) Physics Loss: 0.000753467 (0.001849154) Data Loss: 0.011062279 (0.008014920) BC Loss: 0.016490150 (0.010629211)
Iteration: [ 7001 / 50000] Loss: 0.015494239 (0.020624701) Physics Loss: 0.007333768 (0.001517879) Data Loss: 0.004043682 (0.008185850) BC Loss: 0.004116789 (0.010920972)
Iteration: [ 7501 / 50000] Loss: 0.019155467 (0.018008159) Physics Loss: 0.002511769 (0.001448493) Data Loss: 0.009514628 (0.006572613) BC Loss: 0.007129070 (0.009987052)
Iteration: [ 8001 / 50000] Loss: 0.018706074 (0.017215939) Physics Loss: 0.001792779 (0.001894138) Data Loss: 0.005628760 (0.005433898) BC Loss: 0.011284535 (0.009887908)
Iteration: [ 8501 / 50000] Loss: 0.017605182 (0.019859709) Physics Loss: 0.002696904 (0.003125851) Data Loss: 0.007372384 (0.005978104) BC Loss: 0.007535893 (0.010755754)
Iteration: [ 9001 / 50000] Loss: 0.017614847 (0.016386209) Physics Loss: 0.003162773 (0.002853032) Data Loss: 0.003553676 (0.004607514) BC Loss: 0.010898398 (0.008925664)
Iteration: [ 9501 / 50000] Loss: 0.008732248 (0.014530762) Physics Loss: 0.001913586 (0.002123826) Data Loss: 0.003329928 (0.004253434) BC Loss: 0.003488734 (0.008153505)
Iteration: [10001 / 50000] Loss: 0.017750096 (0.017799046) Physics Loss: 0.003630795 (0.003061282) Data Loss: 0.003031955 (0.005044522) BC Loss: 0.011087346 (0.009693242)
Iteration: [10501 / 50000] Loss: 0.007509941 (0.011342090) Physics Loss: 0.001571818 (0.001135202) Data Loss: 0.001611185 (0.002613829) BC Loss: 0.004326937 (0.007593059)
Iteration: [11001 / 50000] Loss: 0.022739200 (0.011915382) Physics Loss: 0.000807529 (0.001103305) Data Loss: 0.002606506 (0.003132161) BC Loss: 0.019325165 (0.007679918)
Iteration: [11501 / 50000] Loss: 0.019484218 (0.011457845) Physics Loss: 0.001845157 (0.001325290) Data Loss: 0.002358936 (0.002806861) BC Loss: 0.015280124 (0.007325693)
Iteration: [12001 / 50000] Loss: 0.019427970 (0.011598296) Physics Loss: 0.004434146 (0.001386037) Data Loss: 0.008772802 (0.003136263) BC Loss: 0.006221022 (0.007075997)
Iteration: [12501 / 50000] Loss: 0.012775686 (0.011906523) Physics Loss: 0.001197650 (0.001402911) Data Loss: 0.001059842 (0.002556076) BC Loss: 0.010518193 (0.007947534)
Iteration: [13001 / 50000] Loss: 0.006105572 (0.011037273) Physics Loss: 0.000987124 (0.001454655) Data Loss: 0.001305370 (0.002395016) BC Loss: 0.003813077 (0.007187600)
Iteration: [13501 / 50000] Loss: 0.010004668 (0.011247103) Physics Loss: 0.001224264 (0.001615586) Data Loss: 0.002474443 (0.002668936) BC Loss: 0.006305961 (0.006962581)
Iteration: [14001 / 50000] Loss: 0.009895653 (0.009313912) Physics Loss: 0.001215764 (0.001694928) Data Loss: 0.002037087 (0.002155375) BC Loss: 0.006642802 (0.005463609)
Iteration: [14501 / 50000] Loss: 0.014400685 (0.008724037) Physics Loss: 0.001658659 (0.001564218) Data Loss: 0.003658900 (0.002201537) BC Loss: 0.009083126 (0.004958282)
Iteration: [15001 / 50000] Loss: 0.007676640 (0.008405063) Physics Loss: 0.001566568 (0.001608545) Data Loss: 0.002262217 (0.001837625) BC Loss: 0.003847855 (0.004958895)
Iteration: [15501 / 50000] Loss: 0.004365115 (0.009256126) Physics Loss: 0.001047856 (0.002247394) Data Loss: 0.000648518 (0.002218451) BC Loss: 0.002668741 (0.004790282)
Iteration: [16001 / 50000] Loss: 0.004880759 (0.007501942) Physics Loss: 0.001649067 (0.001671217) Data Loss: 0.000296087 (0.001492234) BC Loss: 0.002935605 (0.004338491)
Iteration: [16501 / 50000] Loss: 0.008074892 (0.007220342) Physics Loss: 0.001825325 (0.001970405) Data Loss: 0.001302087 (0.001730468) BC Loss: 0.004947479 (0.003519468)
Iteration: [17001 / 50000] Loss: 0.005824474 (0.005835793) Physics Loss: 0.002019164 (0.001728887) Data Loss: 0.000624455 (0.001011056) BC Loss: 0.003180855 (0.003095849)
Iteration: [17501 / 50000] Loss: 0.006616294 (0.005807751) Physics Loss: 0.002489866 (0.001884541) Data Loss: 0.001154157 (0.001245214) BC Loss: 0.002972272 (0.002677995)
Iteration: [18001 / 50000] Loss: 0.004335414 (0.005200472) Physics Loss: 0.001764537 (0.002015869) Data Loss: 0.000705982 (0.001058994) BC Loss: 0.001864895 (0.002125610)
Iteration: [18501 / 50000] Loss: 0.004978007 (0.005351806) Physics Loss: 0.002553018 (0.002129085) Data Loss: 0.000752965 (0.001336156) BC Loss: 0.001672024 (0.001886566)
Iteration: [19001 / 50000] Loss: 0.004518208 (0.004657542) Physics Loss: 0.001975382 (0.001959185) Data Loss: 0.000239237 (0.000983244) BC Loss: 0.002303589 (0.001715113)
Iteration: [19501 / 50000] Loss: 0.006942283 (0.004119421) Physics Loss: 0.004590358 (0.001714717) Data Loss: 0.001148389 (0.000894285) BC Loss: 0.001203537 (0.001510418)
Iteration: [20001 / 50000] Loss: 0.008026988 (0.003463188) Physics Loss: 0.005315070 (0.001485110) Data Loss: 0.001919697 (0.000688489) BC Loss: 0.000792221 (0.001289588)
Iteration: [20501 / 50000] Loss: 0.004855067 (0.003504427) Physics Loss: 0.001560361 (0.001747428) Data Loss: 0.000460401 (0.000618138) BC Loss: 0.002834306 (0.001138862)
Iteration: [21001 / 50000] Loss: 0.002417301 (0.003299790) Physics Loss: 0.000924424 (0.001513747) Data Loss: 0.000300984 (0.000659882) BC Loss: 0.001191893 (0.001126162)
Iteration: [21501 / 50000] Loss: 0.003911218 (0.002670718) Physics Loss: 0.002752088 (0.001218763) Data Loss: 0.000835131 (0.000637475) BC Loss: 0.000323999 (0.000814481)
Iteration: [22001 / 50000] Loss: 0.002318957 (0.002511334) Physics Loss: 0.001409405 (0.001309370) Data Loss: 0.000344849 (0.000535839) BC Loss: 0.000564703 (0.000666125)
Iteration: [22501 / 50000] Loss: 0.001994215 (0.002343247) Physics Loss: 0.000746255 (0.001113559) Data Loss: 0.000431564 (0.000577084) BC Loss: 0.000816396 (0.000652603)
Iteration: [23001 / 50000] Loss: 0.002989073 (0.002301548) Physics Loss: 0.001930058 (0.001243673) Data Loss: 0.000805100 (0.000536315) BC Loss: 0.000253915 (0.000521560)
Iteration: [23501 / 50000] Loss: 0.002210422 (0.002371583) Physics Loss: 0.001325711 (0.001179150) Data Loss: 0.000160725 (0.000516864) BC Loss: 0.000723986 (0.000675569)
Iteration: [24001 / 50000] Loss: 0.002023818 (0.002276814) Physics Loss: 0.000857553 (0.001135292) Data Loss: 0.000525994 (0.000580056) BC Loss: 0.000640270 (0.000561465)
Iteration: [24501 / 50000] Loss: 0.002234935 (0.002236427) Physics Loss: 0.001041825 (0.001241080) Data Loss: 0.000286281 (0.000510494) BC Loss: 0.000906830 (0.000484853)
Iteration: [25001 / 50000] Loss: 0.001972227 (0.001982885) Physics Loss: 0.000893347 (0.000971555) Data Loss: 0.000666251 (0.000537486) BC Loss: 0.000412629 (0.000473843)
Iteration: [25501 / 50000] Loss: 0.001659834 (0.002081697) Physics Loss: 0.001085884 (0.001258897) Data Loss: 0.000359855 (0.000474958) BC Loss: 0.000214095 (0.000347842)
Iteration: [26001 / 50000] Loss: 0.002059042 (0.001770784) Physics Loss: 0.001171167 (0.000890729) Data Loss: 0.000426463 (0.000447986) BC Loss: 0.000461412 (0.000432069)
Iteration: [26501 / 50000] Loss: 0.002089650 (0.002068657) Physics Loss: 0.001594031 (0.001356683) Data Loss: 0.000330550 (0.000420685) BC Loss: 0.000165069 (0.000291289)
Iteration: [27001 / 50000] Loss: 0.001346401 (0.001879478) Physics Loss: 0.000798861 (0.001050717) Data Loss: 0.000333685 (0.000522715) BC Loss: 0.000213855 (0.000306047)
Iteration: [27501 / 50000] Loss: 0.001717428 (0.001494603) Physics Loss: 0.000754971 (0.000796866) Data Loss: 0.000408040 (0.000351864) BC Loss: 0.000554417 (0.000345872)
Iteration: [28001 / 50000] Loss: 0.001498525 (0.001789054) Physics Loss: 0.000881248 (0.001008533) Data Loss: 0.000310122 (0.000482373) BC Loss: 0.000307154 (0.000298148)
Iteration: [28501 / 50000] Loss: 0.001300987 (0.001541014) Physics Loss: 0.000685782 (0.000873007) Data Loss: 0.000372513 (0.000378884) BC Loss: 0.000242692 (0.000289123)
Iteration: [29001 / 50000] Loss: 0.001302390 (0.001531350) Physics Loss: 0.000764329 (0.000809421) Data Loss: 0.000326938 (0.000448536) BC Loss: 0.000211123 (0.000273393)
Iteration: [29501 / 50000] Loss: 0.001228882 (0.001639404) Physics Loss: 0.000864926 (0.000892691) Data Loss: 0.000257633 (0.000503808) BC Loss: 0.000106323 (0.000242905)
Iteration: [30001 / 50000] Loss: 0.001362466 (0.001636085) Physics Loss: 0.000635906 (0.000994050) Data Loss: 0.000649345 (0.000412151) BC Loss: 0.000077215 (0.000229884)
Iteration: [30501 / 50000] Loss: 0.000972152 (0.001479216) Physics Loss: 0.000619220 (0.000883626) Data Loss: 0.000230181 (0.000379169) BC Loss: 0.000122752 (0.000216420)
Iteration: [31001 / 50000] Loss: 0.005065940 (0.001380907) Physics Loss: 0.004397592 (0.000831873) Data Loss: 0.000477057 (0.000344165) BC Loss: 0.000191290 (0.000204869)
Iteration: [31501 / 50000] Loss: 0.001720798 (0.001439294) Physics Loss: 0.001153235 (0.000778960) Data Loss: 0.000366380 (0.000444564) BC Loss: 0.000201183 (0.000215771)
Iteration: [32001 / 50000] Loss: 0.001272172 (0.001182971) Physics Loss: 0.000547293 (0.000645338) Data Loss: 0.000612554 (0.000330688) BC Loss: 0.000112325 (0.000206944)
Iteration: [32501 / 50000] Loss: 0.001592739 (0.001303701) Physics Loss: 0.001089040 (0.000732894) Data Loss: 0.000368751 (0.000377450) BC Loss: 0.000134948 (0.000193357)
Iteration: [33001 / 50000] Loss: 0.001257007 (0.001731674) Physics Loss: 0.000964463 (0.001143823) Data Loss: 0.000217459 (0.000395994) BC Loss: 0.000075086 (0.000191858)
Iteration: [33501 / 50000] Loss: 0.001404967 (0.001307026) Physics Loss: 0.000708074 (0.000685339) Data Loss: 0.000530431 (0.000435325) BC Loss: 0.000166462 (0.000186362)
Iteration: [34001 / 50000] Loss: 0.000798481 (0.001060399) Physics Loss: 0.000366831 (0.000566683) Data Loss: 0.000218087 (0.000317301) BC Loss: 0.000213564 (0.000176415)
Iteration: [34501 / 50000] Loss: 0.001798573 (0.001364744) Physics Loss: 0.001362987 (0.000847362) Data Loss: 0.000308547 (0.000354412) BC Loss: 0.000127040 (0.000162970)
Iteration: [35001 / 50000] Loss: 0.000781053 (0.001014936) Physics Loss: 0.000422994 (0.000539345) Data Loss: 0.000270824 (0.000311768) BC Loss: 0.000087234 (0.000163823)
Iteration: [35501 / 50000] Loss: 0.001209691 (0.001329915) Physics Loss: 0.000784697 (0.000694873) Data Loss: 0.000264404 (0.000425117) BC Loss: 0.000160591 (0.000209925)
Iteration: [36001 / 50000] Loss: 0.001398915 (0.001136703) Physics Loss: 0.000490567 (0.000583094) Data Loss: 0.000744279 (0.000401171) BC Loss: 0.000164069 (0.000152438)
Iteration: [36501 / 50000] Loss: 0.000835373 (0.001367094) Physics Loss: 0.000595709 (0.000792289) Data Loss: 0.000132676 (0.000426714) BC Loss: 0.000106987 (0.000148092)
Iteration: [37001 / 50000] Loss: 0.000952036 (0.001044580) Physics Loss: 0.000709375 (0.000580873) Data Loss: 0.000161545 (0.000334467) BC Loss: 0.000081115 (0.000129240)
Iteration: [37501 / 50000] Loss: 0.000579479 (0.001085730) Physics Loss: 0.000270049 (0.000599332) Data Loss: 0.000242183 (0.000348117) BC Loss: 0.000067247 (0.000138281)
Iteration: [38001 / 50000] Loss: 0.001053359 (0.001110448) Physics Loss: 0.000445312 (0.000595116) Data Loss: 0.000482833 (0.000353724) BC Loss: 0.000125214 (0.000161607)
Iteration: [38501 / 50000] Loss: 0.000667115 (0.001049175) Physics Loss: 0.000326662 (0.000543516) Data Loss: 0.000173648 (0.000387762) BC Loss: 0.000166804 (0.000117897)
Iteration: [39001 / 50000] Loss: 0.000687853 (0.001085206) Physics Loss: 0.000313576 (0.000590442) Data Loss: 0.000321921 (0.000367264) BC Loss: 0.000052356 (0.000127500)
Iteration: [39501 / 50000] Loss: 0.000673423 (0.001160439) Physics Loss: 0.000421422 (0.000714949) Data Loss: 0.000192454 (0.000300986) BC Loss: 0.000059547 (0.000144504)
Iteration: [40001 / 50000] Loss: 0.000938448 (0.001243982) Physics Loss: 0.000547043 (0.000710499) Data Loss: 0.000287677 (0.000374305) BC Loss: 0.000103729 (0.000159178)
Iteration: [40501 / 50000] Loss: 0.001798752 (0.001093546) Physics Loss: 0.000866074 (0.000650020) Data Loss: 0.000780730 (0.000305183) BC Loss: 0.000151947 (0.000138344)
Iteration: [41001 / 50000] Loss: 0.001101400 (0.001448896) Physics Loss: 0.000600817 (0.000901216) Data Loss: 0.000405329 (0.000389668) BC Loss: 0.000095254 (0.000158011)
Iteration: [41501 / 50000] Loss: 0.000776893 (0.000824789) Physics Loss: 0.000455096 (0.000410463) Data Loss: 0.000206055 (0.000317277) BC Loss: 0.000115742 (0.000097049)
Iteration: [42001 / 50000] Loss: 0.001060384 (0.001240770) Physics Loss: 0.000583868 (0.000778712) Data Loss: 0.000378937 (0.000335865) BC Loss: 0.000097578 (0.000126193)
Iteration: [42501 / 50000] Loss: 0.000691815 (0.000944194) Physics Loss: 0.000381213 (0.000516831) Data Loss: 0.000162085 (0.000307154) BC Loss: 0.000148517 (0.000120209)
Iteration: [43001 / 50000] Loss: 0.000545245 (0.000868335) Physics Loss: 0.000363892 (0.000449657) Data Loss: 0.000124517 (0.000324281) BC Loss: 0.000056836 (0.000094398)
Iteration: [43501 / 50000] Loss: 0.001068081 (0.001141232) Physics Loss: 0.000613936 (0.000622923) Data Loss: 0.000369106 (0.000392804) BC Loss: 0.000085040 (0.000125504)
Iteration: [44001 / 50000] Loss: 0.001168622 (0.000963809) Physics Loss: 0.000486189 (0.000540564) Data Loss: 0.000549527 (0.000306839) BC Loss: 0.000132906 (0.000116407)
Iteration: [44501 / 50000] Loss: 0.000939374 (0.000756769) Physics Loss: 0.000379668 (0.000386392) Data Loss: 0.000454265 (0.000277635) BC Loss: 0.000105440 (0.000092742)
Iteration: [45001 / 50000] Loss: 0.001202180 (0.000892342) Physics Loss: 0.000726597 (0.000506370) Data Loss: 0.000367492 (0.000280093) BC Loss: 0.000108091 (0.000105879)
Iteration: [45501 / 50000] Loss: 0.000887047 (0.000908168) Physics Loss: 0.000641108 (0.000560744) Data Loss: 0.000148591 (0.000263541) BC Loss: 0.000097348 (0.000083883)
Iteration: [46001 / 50000] Loss: 0.000525872 (0.000734937) Physics Loss: 0.000322635 (0.000362759) Data Loss: 0.000158824 (0.000288360) BC Loss: 0.000044412 (0.000083818)
Iteration: [46501 / 50000] Loss: 0.000545968 (0.000907963) Physics Loss: 0.000350560 (0.000489585) Data Loss: 0.000136768 (0.000312205) BC Loss: 0.000058640 (0.000106173)
Iteration: [47001 / 50000] Loss: 0.000826687 (0.000924496) Physics Loss: 0.000575209 (0.000511645) Data Loss: 0.000205284 (0.000314716) BC Loss: 0.000046194 (0.000098134)
Iteration: [47501 / 50000] Loss: 0.000620959 (0.001185708) Physics Loss: 0.000382126 (0.000788119) Data Loss: 0.000148993 (0.000271556) BC Loss: 0.000089840 (0.000126034)
Iteration: [48001 / 50000] Loss: 0.000664698 (0.000798627) Physics Loss: 0.000412207 (0.000461797) Data Loss: 0.000182339 (0.000250679) BC Loss: 0.000070152 (0.000086152)
Iteration: [48501 / 50000] Loss: 0.000826713 (0.000925605) Physics Loss: 0.000485339 (0.000512687) Data Loss: 0.000170909 (0.000314013) BC Loss: 0.000170466 (0.000098905)
Iteration: [49001 / 50000] Loss: 0.000559556 (0.000846881) Physics Loss: 0.000350503 (0.000421408) Data Loss: 0.000165743 (0.000346362) BC Loss: 0.000043311 (0.000079111)
Iteration: [49501 / 50000] Loss: 0.000652327 (0.000740137) Physics Loss: 0.000301691 (0.000376061) Data Loss: 0.000195276 (0.000275985) BC Loss: 0.000155360 (0.000088090)
Visualizing the Results
ts, xs, ys = 0.0f0:0.05f0:2.0f0, 0.0f0:0.02f0:2.0f0, 0.0f0:0.02f0:2.0f0
grid = stack([[elem...] for elem in vec(collect(Iterators.product(xs, ys, ts)))])
u_real = reshape(analytical_solution(grid), length(xs), length(ys), length(ts))
grid_normalized = (grid .- minimum(grid)) ./ (maximum(grid) .- minimum(grid))
u_pred = reshape(trained_u(grid_normalized), length(xs), length(ys), length(ts))
u_pred = u_pred .* (max_pde_val - min_pde_val) .+ min_pde_val
begin
fig = Figure()
ax = CairoMakie.Axis(fig[1, 1]; xlabel="x", ylabel="y")
errs = [abs.(u_pred[:, :, i] .- u_real[:, :, i]) for i in 1:length(ts)]
Colorbar(fig[1, 2]; limits=extrema(stack(errs)))
CairoMakie.record(fig, "pinn_nested_ad.gif", 1:length(ts); framerate=10) do i
ax.title = "Abs. Predictor Error | Time: $(ts[i])"
err = errs[i]
contour!(ax, xs, ys, err; levels=10, linewidth=2)
heatmap!(ax, xs, ys, err)
return fig
end
fig
end
Appendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(MLDataDevices)
if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
println()
AMDGPU.versioninfo()
end
end
Julia Version 1.11.2
Commit 5e9a32e7af2 (2024-12-01 20:02 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 48 × AMD EPYC 7402 24-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver2)
Threads: 48 default, 0 interactive, 24 GC (on 2 virtual cores)
Environment:
JULIA_CPU_THREADS = 2
JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
JULIA_PKG_SERVER =
JULIA_NUM_THREADS = 48
JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0
JULIA_DEBUG = Literate
CUDA runtime 12.6, artifact installation
CUDA driver 12.6
NVIDIA driver 560.35.3
CUDA libraries:
- CUBLAS: 12.6.4
- CURAND: 10.3.7
- CUFFT: 11.3.0
- CUSOLVER: 11.7.1
- CUSPARSE: 12.5.4
- CUPTI: 2024.3.2 (API 24.0.0)
- NVML: 12.0.0+560.35.3
Julia packages:
- CUDA: 5.5.2
- CUDA_Driver_jll: 0.10.4+0
- CUDA_Runtime_jll: 0.15.5+0
Toolchain:
- Julia: 1.11.2
- LLVM: 16.0.6
Environment:
- JULIA_CUDA_HARD_MEMORY_LIMIT: 100%
1 device:
0: NVIDIA A100-PCIE-40GB MIG 1g.5gb (sm_80, 4.203 GiB / 4.750 GiB available)
This page was generated using Literate.jl.