Julia & Lux for the Uninitiated
This is a quick intro to Lux loosely based on:
Flux's tutorial (the link for which has now been lost to abyss).
It introduces basic Julia programming, as well Zygote
, a source-to-source automatic differentiation (AD) framework in Julia. We'll use these tools to build a very simple neural network. Let's start with importing Lux.jl
using Lux, Random
Precompiling Lux...
571.7 ms ✓ ConcreteStructs
507.4 ms ✓ IfElse
513.1 ms ✓ Reexport
512.2 ms ✓ SIMDTypes
544.1 ms ✓ CommonWorldInvalidations
543.5 ms ✓ FastClosures
599.8 ms ✓ ArgCheck
631.4 ms ✓ OpenLibm_jll
702.1 ms ✓ ConstructionBase
761.3 ms ✓ CompilerSupportLibraries_jll
812.2 ms ✓ DocStringExtensions
835.5 ms ✓ Statistics
1029.8 ms ✓ EnzymeCore
533.0 ms ✓ StaticArraysCore
537.9 ms ✓ ManualMemory
543.7 ms ✓ Future
547.0 ms ✓ HashArrayMappedTries
681.0 ms ✓ Requires
908.2 ms ✓ ADTypes
816.3 ms ✓ Compat
723.8 ms ✓ JLLWrappers
664.9 ms ✓ NaNMath
919.7 ms ✓ CpuId
1572.8 ms ✓ IrrationalConstants
745.4 ms ✓ ConstructionBase → ConstructionBaseLinearAlgebraExt
555.0 ms ✓ DiffResults
534.0 ms ✓ ScopedValues
621.3 ms ✓ Adapt
494.8 ms ✓ ADTypes → ADTypesEnzymeCoreExt
526.4 ms ✓ Compat → CompatLinearAlgebraExt
1199.8 ms ✓ Static
599.5 ms ✓ ADTypes → ADTypesConstructionBaseExt
470.4 ms ✓ EnzymeCore → AdaptExt
1291.5 ms ✓ ThreadingUtilities
830.4 ms ✓ LogExpFunctions
989.7 ms ✓ OpenSpecFun_jll
2505.0 ms ✓ UnsafeAtomics
690.2 ms ✓ GPUArraysCore
623.9 ms ✓ BitTwiddlingConvenienceFunctions
766.4 ms ✓ ArrayInterface
892.3 ms ✓ Functors
2890.7 ms ✓ MacroTools
486.2 ms ✓ ArrayInterface → ArrayInterfaceStaticArraysCoreExt
680.7 ms ✓ Atomix
602.5 ms ✓ ArrayInterface → ArrayInterfaceGPUArraysCoreExt
1583.4 ms ✓ CPUSummary
1701.1 ms ✓ ChainRulesCore
938.5 ms ✓ CommonSubexpressions
1042.9 ms ✓ MLDataDevices
589.9 ms ✓ ArrayInterface → ArrayInterfaceChainRulesCoreExt
611.9 ms ✓ ADTypes → ADTypesChainRulesCoreExt
766.8 ms ✓ PolyesterWeave
1780.6 ms ✓ StaticArrayInterface
827.2 ms ✓ MLDataDevices → MLDataDevicesChainRulesCoreExt
1879.3 ms ✓ DispatchDoctor
1990.3 ms ✓ Setfield
680.5 ms ✓ CloseOpenIntervals
1547.4 ms ✓ Optimisers
805.8 ms ✓ LayoutPointers
1601.5 ms ✓ LogExpFunctions → LogExpFunctionsChainRulesCoreExt
483.0 ms ✓ DispatchDoctor → DispatchDoctorEnzymeCoreExt
710.6 ms ✓ DispatchDoctor → DispatchDoctorChainRulesCoreExt
3256.3 ms ✓ SpecialFunctions
471.0 ms ✓ Optimisers → OptimisersAdaptExt
474.0 ms ✓ Optimisers → OptimisersEnzymeCoreExt
1371.6 ms ✓ LuxCore
1011.2 ms ✓ StrideArraysCore
701.2 ms ✓ DiffRules
509.9 ms ✓ LuxCore → LuxCoreEnzymeCoreExt
642.0 ms ✓ LuxCore → LuxCoreSetfieldExt
655.2 ms ✓ LuxCore → LuxCoreMLDataDevicesExt
679.9 ms ✓ LuxCore → LuxCoreFunctorsExt
706.5 ms ✓ LuxCore → LuxCoreChainRulesCoreExt
865.3 ms ✓ Polyester
2042.2 ms ✓ SpecialFunctions → SpecialFunctionsChainRulesCoreExt
3030.3 ms ✓ WeightInitializers
7948.7 ms ✓ StaticArrays
671.0 ms ✓ Adapt → AdaptStaticArraysExt
695.1 ms ✓ StaticArrays → StaticArraysStatisticsExt
700.6 ms ✓ ConstructionBase → ConstructionBaseStaticArraysExt
714.5 ms ✓ StaticArrays → StaticArraysChainRulesCoreExt
730.9 ms ✓ StaticArrayInterface → StaticArrayInterfaceStaticArraysExt
1027.7 ms ✓ WeightInitializers → WeightInitializersChainRulesCoreExt
3814.0 ms ✓ ForwardDiff
831.5 ms ✓ ForwardDiff → ForwardDiffStaticArraysExt
3580.9 ms ✓ KernelAbstractions
692.9 ms ✓ KernelAbstractions → LinearAlgebraExt
769.5 ms ✓ KernelAbstractions → EnzymeExt
5209.2 ms ✓ NNlib
816.3 ms ✓ NNlib → NNlibEnzymeCoreExt
817.0 ms ✓ NNlib → NNlibSpecialFunctionsExt
861.7 ms ✓ NNlib → NNlibForwardDiffExt
7688.7 ms ✓ LuxLib
8928.9 ms ✓ Lux
94 dependencies successfully precompiled in 37 seconds. 11 already precompiled.
Now let us control the randomness in our code using proper Pseudo Random Number Generator (PRNG)
rng = Random.default_rng()
Random.seed!(rng, 0)
Random.TaskLocalRNG()
Arrays
The starting point for all of our models is the Array
(sometimes referred to as a Tensor
in other frameworks). This is really just a list of numbers, which might be arranged into a shape like a square. Let's write down an array with three elements.
x = [1, 2, 3]
3-element Vector{Int64}:
1
2
3
Here's a matrix – a square array with four elements.
x = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
We often work with arrays of thousands of elements, and don't usually write them down by hand. Here's how we can create an array of 5×3 = 15 elements, each a random number from zero to one.
x = rand(rng, 5, 3)
5×3 Matrix{Float64}:
0.455238 0.746943 0.193291
0.547642 0.746801 0.116989
0.773354 0.97667 0.899766
0.940585 0.0869468 0.422918
0.0296477 0.351491 0.707534
There's a few functions like this; try replacing rand
with ones
, zeros
, or randn
.
By default, Julia works stores numbers is a high-precision format called Float64
. In ML we often don't need all those digits, and can ask Julia to work with Float32
instead. We can even ask for more digits using BigFloat
.
x = rand(BigFloat, 5, 3)
5×3 Matrix{BigFloat}:
0.981339 0.793159 0.459019
0.043883 0.624384 0.56055
0.164786 0.524008 0.0355555
0.414769 0.577181 0.621958
0.00823197 0.30215 0.655881
x = rand(Float32, 5, 3)
5×3 Matrix{Float32}:
0.567794 0.369178 0.342539
0.0985227 0.201145 0.587206
0.776598 0.148248 0.0851708
0.723731 0.0770206 0.839303
0.404728 0.230954 0.679087
We can ask the array how many elements it has.
length(x)
15
Or, more specifically, what size it has.
size(x)
(5, 3)
We sometimes want to see some elements of the array on their own.
x
5×3 Matrix{Float32}:
0.567794 0.369178 0.342539
0.0985227 0.201145 0.587206
0.776598 0.148248 0.0851708
0.723731 0.0770206 0.839303
0.404728 0.230954 0.679087
x[2, 3]
0.58720636f0
This means get the second row and the third column. We can also get every row of the third column.
x[:, 3]
5-element Vector{Float32}:
0.34253937
0.58720636
0.085170805
0.8393034
0.67908657
We can add arrays, and subtract them, which adds or subtracts each element of the array.
x + x
5×3 Matrix{Float32}:
1.13559 0.738356 0.685079
0.197045 0.40229 1.17441
1.5532 0.296496 0.170342
1.44746 0.154041 1.67861
0.809456 0.461908 1.35817
x - x
5×3 Matrix{Float32}:
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
Julia supports a feature called broadcasting, using the .
syntax. This tiles small arrays (or single numbers) to fill bigger ones.
x .+ 1
5×3 Matrix{Float32}:
1.56779 1.36918 1.34254
1.09852 1.20114 1.58721
1.7766 1.14825 1.08517
1.72373 1.07702 1.8393
1.40473 1.23095 1.67909
We can see Julia tile the column vector 1:5
across all rows of the larger array.
zeros(5, 5) .+ (1:5)
5×5 Matrix{Float64}:
1.0 1.0 1.0 1.0 1.0
2.0 2.0 2.0 2.0 2.0
3.0 3.0 3.0 3.0 3.0
4.0 4.0 4.0 4.0 4.0
5.0 5.0 5.0 5.0 5.0
The x' syntax is used to transpose a column 1:5
into an equivalent row, and Julia will tile that across columns.
zeros(5, 5) .+ (1:5)'
5×5 Matrix{Float64}:
1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0
We can use this to make a times table.
(1:5) .* (1:5)'
5×5 Matrix{Int64}:
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25
Finally, and importantly for machine learning, we can conveniently do things like matrix multiply.
W = randn(5, 10)
x = rand(10)
W * x
5-element Vector{Float64}:
1.2197981041108443
-2.62625877100596
-2.8573820474674845
-2.4319346874291314
1.0108668577150213
Julia's arrays are very powerful, and you can learn more about what they can do here.
CUDA Arrays
CUDA functionality is provided separately by the CUDA.jl package. If you have a GPU and LuxCUDA is installed, Lux will provide CUDA capabilities. For additional details on backends see the manual section.
You can manually add CUDA
. Once CUDA is loaded you can move any array to the GPU with the cu
function (or the gpu
function exported by `Lux``), and it supports all of the above operations with the same syntax.
using LuxCUDA
if LuxCUDA.functional()
x_cu = cu(rand(5, 3))
@show x_cu
end
(Im)mutability
Lux as you might have read is Immutable by convention which means that the core library is built without any form of mutation and all functions are pure. However, we don't enforce it in any form. We do strongly recommend that users extending this framework for their respective applications don't mutate their arrays.
x = reshape(1:8, 2, 4)
2×4 reshape(::UnitRange{Int64}, 2, 4) with eltype Int64:
1 3 5 7
2 4 6 8
To update this array, we should first copy the array.
x_copy = copy(x)
view(x_copy, :, 1) .= 0
println("Original Array ", x)
println("Mutated Array ", x_copy)
Original Array [1 3 5 7; 2 4 6 8]
Mutated Array [0 3 5 7; 0 4 6 8]
Note that our current default AD engine (Zygote) is unable to differentiate through this mutation, however, for these specialized cases it is quite trivial to write custom backward passes. (This problem will be fixed once we move towards Enzyme.jl)
Managing Randomness
We rely on the Julia StdLib Random
for managing the randomness in our execution. First, we create an PRNG (pseudorandom number generator) and seed it.
rng = Xoshiro(0) # Creates a Xoshiro PRNG with seed 0
Random.Xoshiro(0xdb2fa90498613fdf, 0x48d73dc42d195740, 0x8c49bc52dc8a77ea, 0x1911b814c02405e8, 0x22a21880af5dc689)
If we call any function that relies on rng
and uses it via randn
, rand
, etc. rng
will be mutated. As we have already established we care a lot about immutability, hence we should use Lux.replicate
on PRNGs before using them.
First, let us run a random number generator 3 times with the replicate
d rng.
random_vectors = Vector{Vector{Float64}}(undef, 3)
for i in 1:3
random_vectors[i] = rand(Lux.replicate(rng), 10)
println("Iteration $i ", random_vectors[i])
end
@assert random_vectors[1] ≈ random_vectors[2] ≈ random_vectors[3]
Iteration 1 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]
Iteration 2 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]
Iteration 3 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]
As expected we get the same output. We can remove the replicate
call and we will get different outputs.
for i in 1:3
println("Iteration $i ", rand(rng, 10))
end
Iteration 1 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]
Iteration 2 [0.018743665453639813, 0.8601828553599953, 0.6556360448565952, 0.7746656838366666, 0.7817315740767116, 0.5553797706980106, 0.1261990389976131, 0.4488101521328277, 0.624383955429775, 0.05657739601024536]
Iteration 3 [0.19597391412112541, 0.6830945313415872, 0.6776220912718907, 0.6456416023530093, 0.6340362477836592, 0.5595843665394066, 0.5675557670686644, 0.34351700231383653, 0.7237308297251812, 0.3691778381831775]
Automatic Differentiation
Julia has quite a few (maybe too many) AD tools. For the purpose of this tutorial, we will use:
ForwardDiff.jl – For Jacobian-Vector Product (JVP)
Zygote.jl – For Vector-Jacobian Product (VJP)
Slight Detour: We have had several questions regarding if we will be considering any other AD system for the reverse-diff backend. For now we will stick to Zygote.jl, however once we have tested Lux extensively with Enzyme.jl, we will make the switch.
Even though, theoretically, a VJP (Vector-Jacobian product - reverse autodiff) and a JVP (Jacobian-Vector product - forward-mode autodiff) are similar—they compute a product of a Jacobian and a vector—they differ by the computational complexity of the operation. In short, when you have a large number of parameters (hence a wide matrix), a JVP is less efficient computationally than a VJP, and, conversely, a JVP is more efficient when the Jacobian matrix is a tall matrix.
using ComponentArrays, ForwardDiff, Zygote
Precompiling ComponentArrays...
835.1 ms ✓ ComponentArrays
1 dependency successfully precompiled in 1 seconds. 23 already precompiled.
Precompiling MLDataDevicesComponentArraysExt...
460.0 ms ✓ MLDataDevices → MLDataDevicesComponentArraysExt
1 dependency successfully precompiled in 0 seconds. 26 already precompiled.
Precompiling LuxComponentArraysExt...
464.4 ms ✓ ComponentArrays → ComponentArraysOptimisersExt
1318.6 ms ✓ Lux → LuxComponentArraysExt
1903.8 ms ✓ ComponentArrays → ComponentArraysKernelAbstractionsExt
3 dependencies successfully precompiled in 2 seconds. 107 already precompiled.
Precompiling Zygote...
349.7 ms ✓ DataValueInterfaces
343.9 ms ✓ IteratorInterfaceExtensions
397.0 ms ✓ DataAPI
403.3 ms ✓ RealDot
584.6 ms ✓ OrderedCollections
587.8 ms ✓ SuiteSparse_jll
650.5 ms ✓ AbstractFFTs
686.4 ms ✓ Serialization
353.5 ms ✓ TableTraits
1059.7 ms ✓ FillArrays
421.5 ms ✓ AbstractFFTs → AbstractFFTsChainRulesCoreExt
1138.8 ms ✓ ZygoteRules
394.9 ms ✓ FillArrays → FillArraysStatisticsExt
793.1 ms ✓ Tables
1991.8 ms ✓ IRTools
710.4 ms ✓ StructArrays
1712.8 ms ✓ Distributed
399.7 ms ✓ StructArrays → StructArraysAdaptExt
400.3 ms ✓ StructArrays → StructArraysLinearAlgebraExt
3696.5 ms ✓ SparseArrays
614.9 ms ✓ SuiteSparse
628.7 ms ✓ Adapt → AdaptSparseArraysExt
638.3 ms ✓ Statistics → SparseArraysExt
653.1 ms ✓ StructArrays → StructArraysSparseArraysExt
656.0 ms ✓ ChainRulesCore → ChainRulesCoreSparseArraysExt
674.7 ms ✓ FillArrays → FillArraysSparseArraysExt
581.4 ms ✓ SparseInverseSubset
5204.9 ms ✓ ChainRules
25063.7 ms ✓ Zygote
29 dependencies successfully precompiled in 36 seconds. 36 already precompiled.
Precompiling ArrayInterfaceSparseArraysExt...
583.5 ms ✓ ArrayInterface → ArrayInterfaceSparseArraysExt
1 dependency successfully precompiled in 1 seconds. 8 already precompiled.
Precompiling SparseArraysExt...
899.2 ms ✓ KernelAbstractions → SparseArraysExt
1 dependency successfully precompiled in 1 seconds. 27 already precompiled.
Precompiling MLDataDevicesSparseArraysExt...
615.4 ms ✓ MLDataDevices → MLDataDevicesSparseArraysExt
1 dependency successfully precompiled in 1 seconds. 18 already precompiled.
Precompiling StructArraysStaticArraysExt...
635.7 ms ✓ StructArrays → StructArraysStaticArraysExt
1 dependency successfully precompiled in 1 seconds. 19 already precompiled.
Precompiling StructArraysGPUArraysCoreExt...
664.6 ms ✓ StructArrays → StructArraysGPUArraysCoreExt
1 dependency successfully precompiled in 1 seconds. 34 already precompiled.
Precompiling ArrayInterfaceChainRulesExt...
720.2 ms ✓ ArrayInterface → ArrayInterfaceChainRulesExt
1 dependency successfully precompiled in 1 seconds. 40 already precompiled.
Precompiling MLDataDevicesChainRulesExt...
776.9 ms ✓ MLDataDevices → MLDataDevicesChainRulesExt
1 dependency successfully precompiled in 1 seconds. 41 already precompiled.
Precompiling MLDataDevicesFillArraysExt...
410.7 ms ✓ MLDataDevices → MLDataDevicesFillArraysExt
1 dependency successfully precompiled in 0 seconds. 15 already precompiled.
Precompiling MLDataDevicesZygoteExt...
1470.0 ms ✓ MLDataDevices → MLDataDevicesZygoteExt
1 dependency successfully precompiled in 2 seconds. 71 already precompiled.
Precompiling LuxZygoteExt...
2639.9 ms ✓ Lux → LuxZygoteExt
1 dependency successfully precompiled in 3 seconds. 143 already precompiled.
Precompiling ComponentArraysZygoteExt...
1551.2 ms ✓ ComponentArrays → ComponentArraysZygoteExt
1 dependency successfully precompiled in 2 seconds. 77 already precompiled.
Gradients
For our first example, consider a simple function computing
f(x) = x' * x / 2
∇f(x) = x # `∇` can be typed as `\nabla<TAB>`
v = randn(rng, Float32, 4)
4-element Vector{Float32}:
-0.4051151
-0.4593922
0.92155594
1.1871622
Let's use ForwardDiff and Zygote to compute the gradients.
println("Actual Gradient: ", ∇f(v))
println("Computed Gradient via Reverse Mode AD (Zygote): ", only(Zygote.gradient(f, v)))
println("Computed Gradient via Forward Mode AD (ForwardDiff): ", ForwardDiff.gradient(f, v))
Actual Gradient: Float32[-0.4051151, -0.4593922, 0.92155594, 1.1871622]
Computed Gradient via Reverse Mode AD (Zygote): Float32[-0.4051151, -0.4593922, 0.92155594, 1.1871622]
Computed Gradient via Forward Mode AD (ForwardDiff): Float32[-0.4051151, -0.4593922, 0.92155594, 1.1871622]
Note that AD.gradient
will only work for scalar valued outputs.
Jacobian-Vector Product
I will defer the discussion on forward-mode AD to https://book.sciml.ai/notes/08-Forward-Mode_Automatic_Differentiation_(AD)_via_High_Dimensional_Algebras/. Here let us just look at a mini example on how to use it.
f(x) = x .* x ./ 2
x = randn(rng, Float32, 5)
v = ones(Float32, 5)
5-element Vector{Float32}:
1.0
1.0
1.0
1.0
1.0
Using DifferentiationInterface
While DifferentiationInterface provides these functions for a wider range of backends, we currently don't recommend using them with Lux models, since the functions presented here come with additional goodies like fast second-order derivatives.
Compute the jvp. AutoForwardDiff
specifies that we want to use ForwardDiff.jl
for the Jacobian-Vector Product
jvp = jacobian_vector_product(f, AutoForwardDiff(), x, v)
println("JVP: ", jvp)
JVP: Float32[-0.877497, 1.1953009, -0.057005208, 0.25055695, 0.09351656]
Vector-Jacobian Product
Using the same function and inputs, let us compute the VJP.
vjp = vector_jacobian_product(f, AutoZygote(), x, v)
println("VJP: ", vjp)
VJP: Float32[-0.877497, 1.1953009, -0.057005208, 0.25055695, 0.09351656]
Linear Regression
Finally, now let us consider a linear regression problem. From a set of data-points
We can write f
from scratch, but to demonstrate Lux
, let us use the Dense
layer.
model = Dense(10 => 5)
rng = Random.default_rng()
Random.seed!(rng, 0)
Random.TaskLocalRNG()
Let us initialize the parameters and states (in this case it is empty) for the model.
ps, st = Lux.setup(rng, model)
ps = ComponentArray(ps)
ComponentVector{Float32}(weight = Float32[-0.48351598 0.29944375 0.44048917 0.5221656 0.20001543 0.1437841 4.8317274f-6 0.5310851 -0.30674052 0.034259234; -0.04903387 -0.4242767 0.27051234 0.40789893 -0.43846482 -0.17706361 -0.03258145 0.46514034 0.1958431 0.23992883; 0.45016125 0.48263642 -0.2990853 -0.18695377 -0.11023762 -0.4418456 0.40354207 0.25278285 0.18056087 -0.3523193; 0.05218964 -0.09701932 0.27035674 0.12589 -0.29561827 0.34717593 -0.42189494 -0.13073668 0.36829436 -0.3097294; 0.20277858 -0.51524514 -0.22635892 0.18841726 0.29828635 0.21690917 -0.04265762 -0.41919118 0.071482725 -0.45247704], bias = Float32[-0.04199602, -0.093925126, -0.0007736237, -0.19397983, 0.0066712513])
Set problem dimensions.
n_samples = 20
x_dim = 10
y_dim = 5
5
Generate random ground truth W and b.
W = randn(rng, Float32, y_dim, x_dim)
b = randn(rng, Float32, y_dim)
5-element Vector{Float32}:
-0.9436797
1.5164032
0.011937321
1.4339262
-0.2771789
Generate samples with additional noise.
x_samples = randn(rng, Float32, x_dim, n_samples)
y_samples = W * x_samples .+ b .+ 0.01f0 .* randn(rng, Float32, y_dim, n_samples)
println("x shape: ", size(x_samples), "; y shape: ", size(y_samples))
x shape: (10, 20); y shape: (5, 20)
For updating our parameters let's use Optimisers.jl. We will use Stochastic Gradient Descent (SGD) with a learning rate of 0.01
.
using Optimisers, Printf
Define the loss function
lossfn = MSELoss()
println("Loss Value with ground true parameters: ", lossfn(W * x_samples .+ b, y_samples))
Loss Value with ground true parameters: 9.3742405e-5
We will train the model using our training API.
function train_model!(model, ps, st, opt, nepochs::Int)
tstate = Training.TrainState(model, ps, st, opt)
for i in 1:nepochs
grads, loss, _, tstate = Training.single_train_step!(
AutoZygote(), lossfn, (x_samples, y_samples), tstate
)
if i % 1000 == 1 || i == nepochs
@printf "Loss Value after %6d iterations: %.8f\n" i loss
end
end
return tstate.model, tstate.parameters, tstate.states
end
model, ps, st = train_model!(model, ps, st, Descent(0.01f0), 10000)
println("Loss Value after training: ", lossfn(first(model(x_samples, ps, st)), y_samples))
Loss Value after 1 iterations: 7.80465555
Loss Value after 1001 iterations: 0.12477568
Loss Value after 2001 iterations: 0.02535537
Loss Value after 3001 iterations: 0.00914141
Loss Value after 4001 iterations: 0.00407581
Loss Value after 5001 iterations: 0.00198415
Loss Value after 6001 iterations: 0.00101147
Loss Value after 7001 iterations: 0.00053332
Loss Value after 8001 iterations: 0.00029203
Loss Value after 9001 iterations: 0.00016878
Loss Value after 10000 iterations: 0.00010551
Loss Value after training: 0.00010546855
Appendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(MLDataDevices)
if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
println()
AMDGPU.versioninfo()
end
end
Julia Version 1.11.5
Commit 760b2e5b739 (2025-04-14 06:53 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 128 × AMD EPYC 7502 32-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver2)
Threads: 16 default, 0 interactive, 8 GC (on 16 virtual cores)
Environment:
JULIA_CPU_THREADS = 16
JULIA_DEPOT_PATH = /cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
JULIA_PKG_SERVER =
JULIA_NUM_THREADS = 16
JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0
JULIA_DEBUG = Literate
This page was generated using Literate.jl.