MNIST Classification with SimpleChains
SimpleChains.jl is an excellent framework for training small neural networks. In this tutorial we will demonstrate how to use the same API as Lux.jl to train a model using SimpleChains.jl. We will use the tutorial from SimpleChains.jl as a reference.
Package Imports
using Lux, MLUtils, Optimisers, Zygote, OneHotArrays, Random, Statistics, Printf, Reactant
using MLDatasets: MNIST
using SimpleChains: SimpleChains
Reactant.set_default_backend("cpu")
Precompiling Lux...
3507.2 ms ✓ ForwardDiff
964.7 ms ✓ ForwardDiff → ForwardDiffStaticArraysExt
887.4 ms ✓ NNlib → NNlibForwardDiffExt
5795.2 ms ✓ LuxLib
9135.2 ms ✓ Lux
5 dependencies successfully precompiled in 20 seconds. 100 already precompiled.
Precompiling LuxMLUtilsExt...
2038.3 ms ✓ Lux → LuxMLUtilsExt
1 dependency successfully precompiled in 2 seconds. 164 already precompiled.
Precompiling Zygote...
370.6 ms ✓ RealDot
624.3 ms ✓ SparseInverseSubset
959.3 ms ✓ ZygoteRules
2081.3 ms ✓ IRTools
5389.8 ms ✓ ChainRules
33613.9 ms ✓ Zygote
6 dependencies successfully precompiled in 40 seconds. 59 already precompiled.
Precompiling ArrayInterfaceChainRulesExt...
760.0 ms ✓ ArrayInterface → ArrayInterfaceChainRulesExt
1 dependency successfully precompiled in 1 seconds. 40 already precompiled.
Precompiling MLDataDevicesChainRulesExt...
808.9 ms ✓ MLDataDevices → MLDataDevicesChainRulesExt
1 dependency successfully precompiled in 1 seconds. 41 already precompiled.
Precompiling MLDataDevicesZygoteExt...
1531.4 ms ✓ MLDataDevices → MLDataDevicesZygoteExt
1 dependency successfully precompiled in 2 seconds. 71 already precompiled.
Precompiling LuxZygoteExt...
2566.8 ms ✓ Lux → LuxZygoteExt
1 dependency successfully precompiled in 3 seconds. 143 already precompiled.
Precompiling LuxLibEnzymeExt...
1301.6 ms ✓ LuxLib → LuxLibEnzymeExt
1 dependency successfully precompiled in 2 seconds. 132 already precompiled.
Precompiling LuxEnzymeExt...
7620.2 ms ✓ Lux → LuxEnzymeExt
1 dependency successfully precompiled in 8 seconds. 148 already precompiled.
Precompiling LuxReactantExt...
13850.7 ms ✓ Lux → LuxReactantExt
1 dependency successfully precompiled in 14 seconds. 179 already precompiled.
Precompiling SimpleChains...
345.7 ms ✓ UnPack
799.3 ms ✓ HostCPUFeatures
7660.4 ms ✓ VectorizationBase
1010.9 ms ✓ SLEEFPirates
1240.7 ms ✓ VectorizedRNG
815.6 ms ✓ VectorizedRNG → VectorizedRNGStaticArraysExt
28143.9 ms ✓ LoopVectorization
1023.9 ms ✓ LoopVectorization → SpecialFunctionsExt
1213.4 ms ✓ LoopVectorization → ForwardDiffExt
6460.8 ms ✓ SimpleChains
10 dependencies successfully precompiled in 45 seconds. 59 already precompiled.
Precompiling LuxLibSLEEFPiratesExt...
2342.8 ms ✓ LuxLib → LuxLibSLEEFPiratesExt
1 dependency successfully precompiled in 3 seconds. 93 already precompiled.
Precompiling LuxLibLoopVectorizationExt...
4596.7 ms ✓ LuxLib → LuxLibLoopVectorizationExt
1 dependency successfully precompiled in 5 seconds. 101 already precompiled.
Precompiling LuxSimpleChainsExt...
1880.3 ms ✓ Lux → LuxSimpleChainsExt
1 dependency successfully precompiled in 2 seconds. 122 already precompiled.
2025-04-16 03:35:02.886167: I external/xla/xla/service/service.cc:152] XLA service 0xc17b7d0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2025-04-16 03:35:02.886552: I external/xla/xla/service/service.cc:160] StreamExecutor device (0): NVIDIA A100-PCIE-40GB MIG 1g.5gb, Compute Capability 8.0
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1744774502.887511 4123830 se_gpu_pjrt_client.cc:1040] Using BFC allocator.
I0000 00:00:1744774502.887618 4123830 gpu_helpers.cc:136] XLA backend allocating 3825205248 bytes on device 0 for BFCAllocator.
I0000 00:00:1744774502.887662 4123830 gpu_helpers.cc:177] XLA backend will use up to 1275068416 bytes on device 0 for CollectiveBFCAllocator.
I0000 00:00:1744774502.901992 4123830 cuda_dnn.cc:529] Loaded cuDNN version 90400
Loading MNIST
function loadmnist(batchsize, train_split)
# Load MNIST
N = parse(Bool, get(ENV, "CI", "false")) ? 1500 : nothing
dataset = MNIST(; split=:train)
if N !== nothing
imgs = dataset.features[:, :, 1:N]
labels_raw = dataset.targets[1:N]
else
imgs = dataset.features
labels_raw = dataset.targets
end
# Process images into (H, W, C, BS) batches
x_data = Float32.(reshape(imgs, size(imgs, 1), size(imgs, 2), 1, size(imgs, 3)))
y_data = onehotbatch(labels_raw, 0:9)
(x_train, y_train), (x_test, y_test) = splitobs((x_data, y_data); at=train_split)
return (
# Use DataLoader to automatically minibatch and shuffle the data
DataLoader(collect.((x_train, y_train)); batchsize, shuffle=true, partial=false),
# Don't shuffle the test data
DataLoader(collect.((x_test, y_test)); batchsize, shuffle=false, partial=false),
)
end
loadmnist (generic function with 1 method)
Define the Model
lux_model = Chain(
Conv((5, 5), 1 => 6, relu),
MaxPool((2, 2)),
Conv((5, 5), 6 => 16, relu),
MaxPool((2, 2)),
FlattenLayer(3),
Chain(Dense(256 => 128, relu), Dense(128 => 84, relu), Dense(84 => 10)),
)
Chain(
layer_1 = Conv((5, 5), 1 => 6, relu), # 156 parameters
layer_2 = MaxPool((2, 2)),
layer_3 = Conv((5, 5), 6 => 16, relu), # 2_416 parameters
layer_4 = MaxPool((2, 2)),
layer_5 = Lux.FlattenLayer{Static.StaticInt{3}}(static(3)),
layer_6 = Chain(
layer_1 = Dense(256 => 128, relu), # 32_896 parameters
layer_2 = Dense(128 => 84, relu), # 10_836 parameters
layer_3 = Dense(84 => 10), # 850 parameters
),
) # Total: 47_154 parameters,
# plus 0 states.
We now need to convert the lux_model to SimpleChains.jl. We need to do this by defining the ToSimpleChainsAdaptor
and providing the input dimensions.
adaptor = ToSimpleChainsAdaptor((28, 28, 1))
simple_chains_model = adaptor(lux_model)
SimpleChainsLayer(
Chain(
layer_1 = Conv((5, 5), 1 => 6, relu), # 156 parameters
layer_2 = MaxPool((2, 2)),
layer_3 = Conv((5, 5), 6 => 16, relu), # 2_416 parameters
layer_4 = MaxPool((2, 2)),
layer_5 = Lux.FlattenLayer{Static.StaticInt{3}}(static(3)),
layer_6 = Chain(
layer_1 = Dense(256 => 128, relu), # 32_896 parameters
layer_2 = Dense(128 => 84, relu), # 10_836 parameters
layer_3 = Dense(84 => 10), # 850 parameters
),
),
) # Total: 47_154 parameters,
# plus 0 states.
Helper Functions
const lossfn = CrossEntropyLoss(; logits=Val(true))
function accuracy(model, ps, st, dataloader)
total_correct, total = 0, 0
st = Lux.testmode(st)
for (x, y) in dataloader
target_class = onecold(Array(y))
predicted_class = onecold(Array(first(model(x, ps, st))))
total_correct += sum(target_class .== predicted_class)
total += length(target_class)
end
return total_correct / total
end
accuracy (generic function with 1 method)
Define the Training Loop
function train(model, dev=cpu_device(); rng=Random.default_rng(), kwargs...)
train_dataloader, test_dataloader = dev(loadmnist(128, 0.9))
ps, st = dev(Lux.setup(rng, model))
vjp = dev isa ReactantDevice ? AutoEnzyme() : AutoZygote()
train_state = Training.TrainState(model, ps, st, Adam(3.0f-4))
if dev isa ReactantDevice
x_ra = first(test_dataloader)[1]
model_compiled = @compile model(x_ra, ps, Lux.testmode(st))
else
model_compiled = model
end
### Lets train the model
nepochs = 10
tr_acc, te_acc = 0.0, 0.0
for epoch in 1:nepochs
stime = time()
for (x, y) in train_dataloader
_, _, _, train_state = Training.single_train_step!(
vjp, lossfn, (x, y), train_state
)
end
ttime = time() - stime
tr_acc =
accuracy(
model_compiled, train_state.parameters, train_state.states, train_dataloader
) * 100
te_acc =
accuracy(
model_compiled, train_state.parameters, train_state.states, test_dataloader
) * 100
@printf "[%2d/%2d] \t Time %.2fs \t Training Accuracy: %.2f%% \t Test Accuracy: \
%.2f%%\n" epoch nepochs ttime tr_acc te_acc
end
return tr_acc, te_acc
end
train (generic function with 2 methods)
Finally Training the Model
First we will train the Lux model
tr_acc, te_acc = train(lux_model, reactant_device())
[ 1/10] Time 248.90s Training Accuracy: 12.97% Test Accuracy: 7.81%
[ 2/10] Time 0.22s Training Accuracy: 19.69% Test Accuracy: 17.19%
[ 3/10] Time 0.19s Training Accuracy: 35.31% Test Accuracy: 26.56%
[ 4/10] Time 0.20s Training Accuracy: 46.64% Test Accuracy: 43.75%
[ 5/10] Time 0.22s Training Accuracy: 55.31% Test Accuracy: 50.00%
[ 6/10] Time 0.20s Training Accuracy: 64.06% Test Accuracy: 58.59%
[ 7/10] Time 0.21s Training Accuracy: 68.28% Test Accuracy: 67.97%
[ 8/10] Time 0.20s Training Accuracy: 72.34% Test Accuracy: 68.75%
[ 9/10] Time 0.24s Training Accuracy: 76.64% Test Accuracy: 71.09%
[10/10] Time 0.21s Training Accuracy: 78.59% Test Accuracy: 74.22%
Now we will train the SimpleChains model
tr_acc, te_acc = train(simple_chains_model)
[ 1/10] Time 871.91s Training Accuracy: 16.56% Test Accuracy: 17.19%
[ 2/10] Time 12.09s Training Accuracy: 55.70% Test Accuracy: 51.56%
[ 3/10] Time 12.16s Training Accuracy: 67.11% Test Accuracy: 64.84%
[ 4/10] Time 12.12s Training Accuracy: 73.83% Test Accuracy: 72.66%
[ 5/10] Time 12.13s Training Accuracy: 77.11% Test Accuracy: 77.34%
[ 6/10] Time 12.10s Training Accuracy: 80.39% Test Accuracy: 75.00%
[ 7/10] Time 12.09s Training Accuracy: 81.02% Test Accuracy: 82.81%
[ 8/10] Time 12.07s Training Accuracy: 84.61% Test Accuracy: 84.38%
[ 9/10] Time 12.07s Training Accuracy: 86.80% Test Accuracy: 81.25%
[10/10] Time 12.07s Training Accuracy: 87.58% Test Accuracy: 89.06%
On my local machine we see a 3-4x speedup when using SimpleChains.jl. The conditions of the server this documentation is being built on is not ideal for CPU benchmarking hence, the speedup may not be as significant and even there might be regressions.
Appendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(MLDataDevices)
if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
println()
AMDGPU.versioninfo()
end
end
Julia Version 1.11.5
Commit 760b2e5b739 (2025-04-14 06:53 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 48 × AMD EPYC 7402 24-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver2)
Threads: 48 default, 0 interactive, 24 GC (on 2 virtual cores)
Environment:
JULIA_CPU_THREADS = 2
LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
JULIA_PKG_SERVER =
JULIA_NUM_THREADS = 48
JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0
JULIA_DEBUG = Literate
JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
This page was generated using Literate.jl.