MNIST Classification with SimpleChains
SimpleChains.jl is an excellent framework for training small neural networks. In this tutorial we will demonstrate how to use the same API as Lux.jl to train a model using SimpleChains.jl. We will use the tutorial from SimpleChains.jl as a reference.
Package Imports
using Lux, MLUtils, Optimisers, Zygote, OneHotArrays, Random, Statistics, Printf, Reactant
using MLDatasets: MNIST
using SimpleChains: SimpleChains
Reactant.set_default_backend("cpu")
2025-08-05 23:26:04.218954: I external/xla/xla/service/service.cc:163] XLA service 0xf461ca0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2025-08-05 23:26:04.219074: I external/xla/xla/service/service.cc:171] StreamExecutor device (0): Quadro RTX 5000, Compute Capability 7.5
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1754436364.220125 318776 se_gpu_pjrt_client.cc:1373] Using BFC allocator.
I0000 00:00:1754436364.220311 318776 gpu_helpers.cc:136] XLA backend allocating 12528893952 bytes on device 0 for BFCAllocator.
I0000 00:00:1754436364.220432 318776 gpu_helpers.cc:177] XLA backend will use up to 4176297984 bytes on device 0 for CollectiveBFCAllocator.
2025-08-05 23:26:04.234863: I external/xla/xla/stream_executor/cuda/cuda_dnn.cc:473] Loaded cuDNN version 90800
Loading MNIST
function loadmnist(batchsize, train_split)
# Load MNIST
N = parse(Bool, get(ENV, "CI", "false")) ? 1500 : nothing
dataset = MNIST(; split=:train)
if N !== nothing
imgs = dataset.features[:, :, 1:N]
labels_raw = dataset.targets[1:N]
else
imgs = dataset.features
labels_raw = dataset.targets
end
# Process images into (H, W, C, BS) batches
x_data = Float32.(reshape(imgs, size(imgs, 1), size(imgs, 2), 1, size(imgs, 3)))
y_data = onehotbatch(labels_raw, 0:9)
(x_train, y_train), (x_test, y_test) = splitobs((x_data, y_data); at=train_split)
return (
# Use DataLoader to automatically minibatch and shuffle the data
DataLoader(collect.((x_train, y_train)); batchsize, shuffle=true, partial=false),
# Don't shuffle the test data
DataLoader(collect.((x_test, y_test)); batchsize, shuffle=false, partial=false),
)
end
Define the Model
lux_model = Chain(
Conv((5, 5), 1 => 6, relu),
MaxPool((2, 2)),
Conv((5, 5), 6 => 16, relu),
MaxPool((2, 2)),
FlattenLayer(3),
Chain(Dense(256 => 128, relu), Dense(128 => 84, relu), Dense(84 => 10)),
)
Chain(
layer_1 = Conv((5, 5), 1 => 6, relu), # 156 parameters
layer_2 = MaxPool((2, 2)),
layer_3 = Conv((5, 5), 6 => 16, relu), # 2_416 parameters
layer_4 = MaxPool((2, 2)),
layer_5 = Lux.FlattenLayer{Static.StaticInt{3}}(static(3)),
layer_6 = Chain(
layer_1 = Dense(256 => 128, relu), # 32_896 parameters
layer_2 = Dense(128 => 84, relu), # 10_836 parameters
layer_3 = Dense(84 => 10), # 850 parameters
),
) # Total: 47_154 parameters,
# plus 0 states.
We now need to convert the lux_model to SimpleChains.jl. We need to do this by defining the ToSimpleChainsAdaptor
and providing the input dimensions.
adaptor = ToSimpleChainsAdaptor((28, 28, 1))
simple_chains_model = adaptor(lux_model)
SimpleChainsLayer(
Chain(
layer_1 = Conv((5, 5), 1 => 6, relu), # 156 parameters
layer_2 = MaxPool((2, 2)),
layer_3 = Conv((5, 5), 6 => 16, relu), # 2_416 parameters
layer_4 = MaxPool((2, 2)),
layer_5 = Lux.FlattenLayer{Static.StaticInt{3}}(static(3)),
layer_6 = Chain(
layer_1 = Dense(256 => 128, relu), # 32_896 parameters
layer_2 = Dense(128 => 84, relu), # 10_836 parameters
layer_3 = Dense(84 => 10), # 850 parameters
),
),
) # Total: 47_154 parameters,
# plus 0 states.
Helper Functions
const lossfn = CrossEntropyLoss(; logits=Val(true))
function accuracy(model, ps, st, dataloader)
total_correct, total = 0, 0
st = Lux.testmode(st)
for (x, y) in dataloader
target_class = onecold(Array(y))
predicted_class = onecold(Array(first(model(x, ps, st))))
total_correct += sum(target_class .== predicted_class)
total += length(target_class)
end
return total_correct / total
end
accuracy (generic function with 1 method)
Define the Training Loop
function train(model, dev=cpu_device(); rng=Random.default_rng(), kwargs...)
train_dataloader, test_dataloader = dev(loadmnist(128, 0.9))
ps, st = dev(Lux.setup(rng, model))
vjp = dev isa ReactantDevice ? AutoEnzyme() : AutoZygote()
train_state = Training.TrainState(model, ps, st, Adam(3.0f-4))
if dev isa ReactantDevice
x_ra = first(test_dataloader)[1]
model_compiled = Reactant.with_config(;
dot_general_precision=PrecisionConfig.HIGH,
convolution_precision=PrecisionConfig.HIGH,
) do
@compile model(x_ra, ps, Lux.testmode(st))
end
else
model_compiled = model
end
### Lets train the model
nepochs = 10
tr_acc, te_acc = 0.0, 0.0
for epoch in 1:nepochs
stime = time()
for (x, y) in train_dataloader
_, _, _, train_state = Training.single_train_step!(
vjp, lossfn, (x, y), train_state
)
end
ttime = time() - stime
tr_acc =
accuracy(
model_compiled, train_state.parameters, train_state.states, train_dataloader
) * 100
te_acc =
accuracy(
model_compiled, train_state.parameters, train_state.states, test_dataloader
) * 100
@printf "[%2d/%2d] \t Time %.2fs \t Training Accuracy: %.2f%% \t Test Accuracy: \
%.2f%%\n" epoch nepochs ttime tr_acc te_acc
end
return tr_acc, te_acc
end
Finally Training the Model
First we will train the Lux model
tr_acc, te_acc = train(lux_model, reactant_device())
[ 1/10] Time 460.88s Training Accuracy: 14.92% Test Accuracy: 10.94%
[ 2/10] Time 0.11s Training Accuracy: 30.00% Test Accuracy: 23.44%
[ 3/10] Time 0.17s Training Accuracy: 45.86% Test Accuracy: 36.72%
[ 4/10] Time 0.09s Training Accuracy: 55.78% Test Accuracy: 51.56%
[ 5/10] Time 0.09s Training Accuracy: 65.16% Test Accuracy: 58.59%
[ 6/10] Time 0.10s Training Accuracy: 70.70% Test Accuracy: 67.19%
[ 7/10] Time 0.10s Training Accuracy: 74.92% Test Accuracy: 66.41%
[ 8/10] Time 0.10s Training Accuracy: 78.67% Test Accuracy: 71.09%
[ 9/10] Time 0.16s Training Accuracy: 82.27% Test Accuracy: 72.66%
[10/10] Time 0.14s Training Accuracy: 83.52% Test Accuracy: 74.22%
Now we will train the SimpleChains model
tr_acc, te_acc = train(simple_chains_model)
[ 1/10] Time 1034.72s Training Accuracy: 27.03% Test Accuracy: 26.56%
[ 2/10] Time 12.42s Training Accuracy: 50.31% Test Accuracy: 51.56%
[ 3/10] Time 12.39s Training Accuracy: 62.27% Test Accuracy: 59.38%
[ 4/10] Time 12.39s Training Accuracy: 70.00% Test Accuracy: 66.41%
[ 5/10] Time 12.32s Training Accuracy: 79.22% Test Accuracy: 69.53%
[ 6/10] Time 12.29s Training Accuracy: 80.78% Test Accuracy: 71.88%
[ 7/10] Time 12.28s Training Accuracy: 83.83% Test Accuracy: 78.12%
[ 8/10] Time 12.30s Training Accuracy: 84.69% Test Accuracy: 79.69%
[ 9/10] Time 12.28s Training Accuracy: 86.17% Test Accuracy: 82.81%
[10/10] Time 12.29s Training Accuracy: 87.66% Test Accuracy: 82.03%
On my local machine we see a 3-4x speedup when using SimpleChains.jl. The conditions of the server this documentation is being built on is not ideal for CPU benchmarking hence, the speedup may not be as significant and even there might be regressions.
Appendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(MLDataDevices)
if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
println()
AMDGPU.versioninfo()
end
end
Julia Version 1.11.6
Commit 9615af0f269 (2025-07-09 12:58 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 48 × AMD EPYC 7402 24-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver2)
Threads: 48 default, 0 interactive, 24 GC (on 2 virtual cores)
Environment:
JULIA_CPU_THREADS = 2
LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
JULIA_PKG_SERVER =
JULIA_NUM_THREADS = 48
JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0
JULIA_DEBUG = Literate
JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
This page was generated using Literate.jl.