Skip to content

MNIST Classification with SimpleChains

SimpleChains.jl is an excellent framework for training small neural networks. In this tutorial we will demonstrate how to use the same API as Lux.jl to train a model using SimpleChains.jl. We will use the tutorial from SimpleChains.jl as a reference.

Package Imports

julia
using Lux, MLUtils, Optimisers, Zygote, OneHotArrays, Random, Statistics, Printf, Reactant
using MLDatasets: MNIST
using SimpleChains: SimpleChains

Reactant.set_default_backend("cpu")
Precompiling Reactant...
  19010.0 ms  ✓ HTTP
  90000.6 ms  ✓ Reactant
  2 dependencies successfully precompiled in 109 seconds. 78 already precompiled.
Precompiling OptimisersReactantExt...
  17517.8 ms  ✓ Reactant → ReactantStatisticsExt
  19762.0 ms  ✓ Optimisers → OptimisersReactantExt
  2 dependencies successfully precompiled in 20 seconds. 88 already precompiled.
Precompiling LuxCoreReactantExt...
  17161.3 ms  ✓ LuxCore → LuxCoreReactantExt
  1 dependency successfully precompiled in 17 seconds. 85 already precompiled.
Precompiling MLDataDevicesReactantExt...
  17368.5 ms  ✓ MLDataDevices → MLDataDevicesReactantExt
  1 dependency successfully precompiled in 18 seconds. 82 already precompiled.
Precompiling LuxLibReactantExt...
  16838.5 ms  ✓ Reactant → ReactantSpecialFunctionsExt
  17520.3 ms  ✓ LuxLib → LuxLibReactantExt
  17753.4 ms  ✓ Reactant → ReactantKernelAbstractionsExt
  16663.6 ms  ✓ Reactant → ReactantArrayInterfaceExt
  4 dependencies successfully precompiled in 34 seconds. 158 already precompiled.
Precompiling WeightInitializersReactantExt...
  16900.9 ms  ✓ WeightInitializers → WeightInitializersReactantExt
  1 dependency successfully precompiled in 17 seconds. 96 already precompiled.
Precompiling ReactantAbstractFFTsExt...
  17084.2 ms  ✓ Reactant → ReactantAbstractFFTsExt
  1 dependency successfully precompiled in 17 seconds. 82 already precompiled.
Precompiling ReactantOneHotArraysExt...
  17660.2 ms  ✓ Reactant → ReactantOneHotArraysExt
  1 dependency successfully precompiled in 18 seconds. 104 already precompiled.
Precompiling ReactantNNlibExt...
  19707.4 ms  ✓ Reactant → ReactantNNlibExt
  1 dependency successfully precompiled in 20 seconds. 103 already precompiled.
Precompiling LuxReactantExt...
  11948.4 ms  ✓ Lux → LuxReactantExt
  1 dependency successfully precompiled in 12 seconds. 180 already precompiled.
Precompiling MLDatasets...
    394.6 ms  ✓ Glob
    450.8 ms  ✓ WorkerUtilities
    505.4 ms  ✓ BufferedStreams
    338.1 ms  ✓ PackageExtensionCompat
    359.7 ms  ✓ InternedStrings
   1764.1 ms  ✓ FileIO → HTTPExt
   3016.6 ms  ✓ DataDeps
    451.9 ms  ✓ StridedViews
    371.0 ms  ✓ StridedViews → StridedViewsPtrArraysExt
   2283.3 ms  ✓ MAT
   2282.5 ms  ✓ Pickle
  18524.8 ms  ✓ CSV
   9274.5 ms  ✓ MLDatasets
  13 dependencies successfully precompiled in 29 seconds. 191 already precompiled.
Precompiling ReactantOffsetArraysExt...
  16894.6 ms  ✓ Reactant → ReactantOffsetArraysExt
  1 dependency successfully precompiled in 17 seconds. 82 already precompiled.
2025-07-09 04:05:51.779296: I external/xla/xla/service/service.cc:153] XLA service 0x24933560 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2025-07-09 04:05:51.779412: I external/xla/xla/service/service.cc:161]   StreamExecutor device (0): NVIDIA A100-PCIE-40GB MIG 1g.5gb, Compute Capability 8.0
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1752033951.780209 1104355 se_gpu_pjrt_client.cc:1370] Using BFC allocator.
I0000 00:00:1752033951.780289 1104355 gpu_helpers.cc:136] XLA backend allocating 3825205248 bytes on device 0 for BFCAllocator.
I0000 00:00:1752033951.780335 1104355 gpu_helpers.cc:177] XLA backend will use up to 1275068416 bytes on device 0 for CollectiveBFCAllocator.
I0000 00:00:1752033951.793766 1104355 cuda_dnn.cc:471] Loaded cuDNN version 90800

Loading MNIST

julia
function loadmnist(batchsize, train_split)
    # Load MNIST
    N = parse(Bool, get(ENV, "CI", "false")) ? 1500 : nothing
    dataset = MNIST(; split=:train)
    if N !== nothing
        imgs = dataset.features[:, :, 1:N]
        labels_raw = dataset.targets[1:N]
    else
        imgs = dataset.features
        labels_raw = dataset.targets
    end

    # Process images into (H, W, C, BS) batches
    x_data = Float32.(reshape(imgs, size(imgs, 1), size(imgs, 2), 1, size(imgs, 3)))
    y_data = onehotbatch(labels_raw, 0:9)
    (x_train, y_train), (x_test, y_test) = splitobs((x_data, y_data); at=train_split)

    return (
        # Use DataLoader to automatically minibatch and shuffle the data
        DataLoader(collect.((x_train, y_train)); batchsize, shuffle=true, partial=false),
        # Don't shuffle the test data
        DataLoader(collect.((x_test, y_test)); batchsize, shuffle=false, partial=false),
    )
end
loadmnist (generic function with 1 method)

Define the Model

julia
lux_model = Chain(
    Conv((5, 5), 1 => 6, relu),
    MaxPool((2, 2)),
    Conv((5, 5), 6 => 16, relu),
    MaxPool((2, 2)),
    FlattenLayer(3),
    Chain(Dense(256 => 128, relu), Dense(128 => 84, relu), Dense(84 => 10)),
)
Chain(
    layer_1 = Conv((5, 5), 1 => 6, relu),  # 156 parameters
    layer_2 = MaxPool((2, 2)),
    layer_3 = Conv((5, 5), 6 => 16, relu),  # 2_416 parameters
    layer_4 = MaxPool((2, 2)),
    layer_5 = Lux.FlattenLayer{Static.StaticInt{3}}(static(3)),
    layer_6 = Chain(
        layer_1 = Dense(256 => 128, relu),  # 32_896 parameters
        layer_2 = Dense(128 => 84, relu),  # 10_836 parameters
        layer_3 = Dense(84 => 10),      # 850 parameters
    ),
)         # Total: 47_154 parameters,
          #        plus 0 states.

We now need to convert the lux_model to SimpleChains.jl. We need to do this by defining the ToSimpleChainsAdaptor and providing the input dimensions.

julia
adaptor = ToSimpleChainsAdaptor((28, 28, 1))
simple_chains_model = adaptor(lux_model)
SimpleChainsLayer(
    Chain(
        layer_1 = Conv((5, 5), 1 => 6, relu),  # 156 parameters
        layer_2 = MaxPool((2, 2)),
        layer_3 = Conv((5, 5), 6 => 16, relu),  # 2_416 parameters
        layer_4 = MaxPool((2, 2)),
        layer_5 = Lux.FlattenLayer{Static.StaticInt{3}}(static(3)),
        layer_6 = Chain(
            layer_1 = Dense(256 => 128, relu),  # 32_896 parameters
            layer_2 = Dense(128 => 84, relu),  # 10_836 parameters
            layer_3 = Dense(84 => 10),  # 850 parameters
        ),
    ),
)         # Total: 47_154 parameters,
          #        plus 0 states.

Helper Functions

julia
const lossfn = CrossEntropyLoss(; logits=Val(true))

function accuracy(model, ps, st, dataloader)
    total_correct, total = 0, 0
    st = Lux.testmode(st)
    for (x, y) in dataloader
        target_class = onecold(Array(y))
        predicted_class = onecold(Array(first(model(x, ps, st))))
        total_correct += sum(target_class .== predicted_class)
        total += length(target_class)
    end
    return total_correct / total
end
accuracy (generic function with 1 method)

Define the Training Loop

julia
function train(model, dev=cpu_device(); rng=Random.default_rng(), kwargs...)
    train_dataloader, test_dataloader = dev(loadmnist(128, 0.9))
    ps, st = dev(Lux.setup(rng, model))

    vjp = dev isa ReactantDevice ? AutoEnzyme() : AutoZygote()

    train_state = Training.TrainState(model, ps, st, Adam(3.0f-4))

    if dev isa ReactantDevice
        x_ra = first(test_dataloader)[1]
        model_compiled = Reactant.with_config(;
            dot_general_precision=PrecisionConfig.HIGH,
            convolution_precision=PrecisionConfig.HIGH,
        ) do
            @compile model(x_ra, ps, Lux.testmode(st))
        end
    else
        model_compiled = model
    end

    ### Lets train the model
    nepochs = 10
    tr_acc, te_acc = 0.0, 0.0
    for epoch in 1:nepochs
        stime = time()
        for (x, y) in train_dataloader
            _, _, _, train_state = Training.single_train_step!(
                vjp, lossfn, (x, y), train_state
            )
        end
        ttime = time() - stime

        tr_acc =
            accuracy(
                model_compiled, train_state.parameters, train_state.states, train_dataloader
            ) * 100
        te_acc =
            accuracy(
                model_compiled, train_state.parameters, train_state.states, test_dataloader
            ) * 100

        @printf "[%2d/%2d] \t Time %.2fs \t Training Accuracy: %.2f%% \t Test Accuracy: \
                 %.2f%%\n" epoch nepochs ttime tr_acc te_acc
    end

    return tr_acc, te_acc
end
train (generic function with 2 methods)

Finally Training the Model

First we will train the Lux model

julia
tr_acc, te_acc = train(lux_model, reactant_device())
[ 1/10] 	 Time 389.09s 	 Training Accuracy: 11.56% 	 Test Accuracy: 14.84%
[ 2/10] 	 Time 0.11s 	 Training Accuracy: 30.23% 	 Test Accuracy: 32.81%
[ 3/10] 	 Time 0.10s 	 Training Accuracy: 40.47% 	 Test Accuracy: 45.31%
[ 4/10] 	 Time 0.12s 	 Training Accuracy: 52.11% 	 Test Accuracy: 51.56%
[ 5/10] 	 Time 0.10s 	 Training Accuracy: 62.73% 	 Test Accuracy: 65.62%
[ 6/10] 	 Time 0.10s 	 Training Accuracy: 69.14% 	 Test Accuracy: 68.75%
[ 7/10] 	 Time 0.10s 	 Training Accuracy: 74.14% 	 Test Accuracy: 71.09%
[ 8/10] 	 Time 0.10s 	 Training Accuracy: 77.27% 	 Test Accuracy: 75.00%
[ 9/10] 	 Time 0.10s 	 Training Accuracy: 81.17% 	 Test Accuracy: 77.34%
[10/10] 	 Time 0.09s 	 Training Accuracy: 83.44% 	 Test Accuracy: 78.91%

Now we will train the SimpleChains model

julia
tr_acc, te_acc = train(simple_chains_model)
[ 1/10] 	 Time 896.41s 	 Training Accuracy: 31.33% 	 Test Accuracy: 31.25%
[ 2/10] 	 Time 12.14s 	 Training Accuracy: 52.50% 	 Test Accuracy: 49.22%
[ 3/10] 	 Time 12.13s 	 Training Accuracy: 59.53% 	 Test Accuracy: 51.56%
[ 4/10] 	 Time 12.17s 	 Training Accuracy: 70.31% 	 Test Accuracy: 62.50%
[ 5/10] 	 Time 12.21s 	 Training Accuracy: 74.30% 	 Test Accuracy: 71.09%
[ 6/10] 	 Time 12.23s 	 Training Accuracy: 80.86% 	 Test Accuracy: 75.00%
[ 7/10] 	 Time 12.24s 	 Training Accuracy: 83.75% 	 Test Accuracy: 78.12%
[ 8/10] 	 Time 12.24s 	 Training Accuracy: 85.08% 	 Test Accuracy: 81.25%
[ 9/10] 	 Time 12.25s 	 Training Accuracy: 85.55% 	 Test Accuracy: 81.25%
[10/10] 	 Time 12.28s 	 Training Accuracy: 87.34% 	 Test Accuracy: 84.38%

On my local machine we see a 3-4x speedup when using SimpleChains.jl. The conditions of the server this documentation is being built on is not ideal for CPU benchmarking hence, the speedup may not be as significant and even there might be regressions.

Appendix

julia
using InteractiveUtils
InteractiveUtils.versioninfo()

if @isdefined(MLDataDevices)
    if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
        println()
        CUDA.versioninfo()
    end

    if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
        println()
        AMDGPU.versioninfo()
    end
end
Julia Version 1.11.5
Commit 760b2e5b739 (2025-04-14 06:53 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 48 × AMD EPYC 7402 24-Core Processor
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver2)
Threads: 48 default, 0 interactive, 24 GC (on 2 virtual cores)
Environment:
  JULIA_CPU_THREADS = 2
  LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
  JULIA_PKG_SERVER = 
  JULIA_NUM_THREADS = 48
  JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
  JULIA_PKG_PRECOMPILE_AUTO = 0
  JULIA_DEBUG = Literate
  JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6

This page was generated using Literate.jl.