Training a Simple LSTM
In this tutorial we will go over using a recurrent neural network to classify clockwise and anticlockwise spirals. By the end of this tutorial you will be able to:
Create custom Lux models.
Become familiar with the Lux recurrent neural network API.
Training using Optimisers.jl and Zygote.jl.
Package Imports
Note: If you wish to use AutoZygote() for automatic differentiation, add Zygote to your project dependencies and include using Zygote.
using ADTypes, Lux, JLD2, MLUtils, Optimisers, Printf, Reactant, RandomDataset
We will use MLUtils to generate 500 (noisy) clockwise and 500 (noisy) anticlockwise spirals. Using this data we will create a MLUtils.DataLoader. Our dataloader will give us sequences of size 2 × seq_len × batch_size and we need to predict a binary value whether the sequence is clockwise or anticlockwise.
function create_dataset(; dataset_size=1000, sequence_length=50)
# Create the spirals
data = [MLUtils.Datasets.make_spiral(sequence_length) for _ in 1:dataset_size]
# Get the labels
labels = vcat(repeat([0.0f0], dataset_size ÷ 2), repeat([1.0f0], dataset_size ÷ 2))
clockwise_spirals = [
reshape(d[1][:, 1:sequence_length], :, sequence_length, 1) for
d in data[1:(dataset_size ÷ 2)]
]
anticlockwise_spirals = [
reshape(d[1][:, (sequence_length + 1):end], :, sequence_length, 1) for
d in data[((dataset_size ÷ 2) + 1):end]
]
x_data = Float32.(cat(clockwise_spirals..., anticlockwise_spirals...; dims=3))
return x_data, labels
end
function get_dataloaders(; dataset_size=1000, sequence_length=50)
x_data, labels = create_dataset(; dataset_size, sequence_length)
# Split the dataset
(x_train, y_train), (x_val, y_val) = splitobs((x_data, labels); at=0.8, shuffle=true)
# Create DataLoaders
return (
# Use DataLoader to automatically minibatch and shuffle the data
DataLoader(
collect.((x_train, y_train)); batchsize=128, shuffle=true, partial=false
),
# Don't shuffle the validation data
DataLoader(collect.((x_val, y_val)); batchsize=128, shuffle=false, partial=false),
)
endCreating a Classifier
We will be extending the Lux.AbstractLuxContainerLayer type for our custom model since it will contain a LSTM block and a classifier head.
We pass the field names lstm_cell and classifier to the type to ensure that the parameters and states are automatically populated and we don't have to define Lux.initialparameters and Lux.initialstates.
To understand more about container layers, please look at Container Layer.
struct SpiralClassifier{L,C} <: AbstractLuxContainerLayer{(:lstm_cell, :classifier)}
lstm_cell::L
classifier::C
endWe won't define the model from scratch but rather use the Lux.LSTMCell and Lux.Dense.
function SpiralClassifier(in_dims, hidden_dims, out_dims)
return SpiralClassifier(
LSTMCell(in_dims => hidden_dims), Dense(hidden_dims => out_dims, sigmoid)
)
endWe can use default Lux blocks – Recurrence(LSTMCell(in_dims => hidden_dims) – instead of defining the following. But let's still do it for the sake of it.
Now we need to define the behavior of the Classifier when it is invoked.
function (s::SpiralClassifier)(
x::AbstractArray{T,3}, ps::NamedTuple, st::NamedTuple
) where {T}
# First we will have to run the sequence through the LSTM Cell
# The first call to LSTM Cell will create the initial hidden state
# See that the parameters and states are automatically populated into a field called
# `lstm_cell` We use `eachslice` to get the elements in the sequence without copying,
# and `Iterators.peel` to split out the first element for LSTM initialization.
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
(y, carry), st_lstm = s.lstm_cell(x_init, ps.lstm_cell, st.lstm_cell)
# Now that we have the hidden state and memory in `carry` we will pass the input and
# `carry` jointly
for x in x_rest
(y, carry), st_lstm = s.lstm_cell((x, carry), ps.lstm_cell, st_lstm)
end
# After running through the sequence we will pass the output through the classifier
y, st_classifier = s.classifier(y, ps.classifier, st.classifier)
# Finally remember to create the updated state
st = merge(st, (classifier=st_classifier, lstm_cell=st_lstm))
return vec(y), st
endUsing the @compact API
We can also define the model using the Lux.@compact API, which is a more concise way of defining models. This macro automatically handles the boilerplate code for you and as such we recommend this way of defining custom layers
function SpiralClassifierCompact(in_dims, hidden_dims, out_dims)
lstm_cell = LSTMCell(in_dims => hidden_dims)
classifier = Dense(hidden_dims => out_dims, sigmoid)
return @compact(; lstm_cell, classifier) do x::AbstractArray{T,3} where {T}
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
y, carry = lstm_cell(x_init)
for x in x_rest
y, carry = lstm_cell((x, carry))
end
@return vec(classifier(y))
end
endDefining Accuracy, Loss and Optimiser
Now let's define the binary cross-entropy loss. Typically it is recommended to use logitbinarycrossentropy since it is more numerically stable, but for the sake of simplicity we will use binarycrossentropy.
const lossfn = BinaryCrossEntropyLoss()
function compute_loss(model, ps, st, (x, y))
ŷ, st_ = model(x, ps, st)
loss = lossfn(ŷ, y)
return loss, st_, (; y_pred=ŷ)
end
matches(y_pred, y_true) = sum((y_pred .> 0.5f0) .== y_true)
accuracy(y_pred, y_true) = matches(y_pred, y_true) / length(y_pred)Training the Model
function main(model_type)
dev = reactant_device()
cdev = cpu_device()
# Get the dataloaders
train_loader, val_loader = get_dataloaders() |> dev
# Create the model
model = model_type(2, 8, 1)
ps, st = Lux.setup(Random.default_rng(), model) |> dev
train_state = Training.TrainState(model, ps, st, Adam(0.01f0))
model_compiled = if dev isa ReactantDevice
@compile model(first(train_loader)[1], ps, Lux.testmode(st))
else
model
end
ad = dev isa ReactantDevice ? AutoEnzyme() : AutoZygote()
for epoch in 1:25
# Train the model
total_loss = 0.0f0
total_samples = 0
for (x, y) in train_loader
(_, loss, _, train_state) = Training.single_train_step!(
ad, lossfn, (x, y), train_state
)
total_loss += loss * length(y)
total_samples += length(y)
end
@printf("Epoch [%3d]: Loss %4.5f\n", epoch, total_loss / total_samples)
# Validate the model
total_acc = 0.0f0
total_loss = 0.0f0
total_samples = 0
st_ = Lux.testmode(train_state.states)
for (x, y) in val_loader
ŷ, st_ = model_compiled(x, train_state.parameters, st_)
ŷ, y = cdev(ŷ), cdev(y)
total_acc += accuracy(ŷ, y) * length(y)
total_loss += lossfn(ŷ, y) * length(y)
total_samples += length(y)
end
@printf(
"Validation:\tLoss %4.5f\tAccuracy %4.5f\n",
total_loss / total_samples,
total_acc / total_samples
)
end
return (train_state.parameters, train_state.states) |> cdev
end
ps_trained, st_trained = main(SpiralClassifier)┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore ~/work/Lux.jl/Lux.jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [ 1]: Loss 0.78204
Validation: Loss 0.69532 Accuracy 0.42188
Epoch [ 2]: Loss 0.59822
Validation: Loss 0.51748 Accuracy 1.00000
Epoch [ 3]: Loss 0.45883
Validation: Loss 0.38609 Accuracy 1.00000
Epoch [ 4]: Loss 0.35797
Validation: Loss 0.31100 Accuracy 1.00000
Epoch [ 5]: Loss 0.30220
Validation: Loss 0.26855 Accuracy 1.00000
Epoch [ 6]: Loss 0.26252
Validation: Loss 0.23255 Accuracy 1.00000
Epoch [ 7]: Loss 0.22490
Validation: Loss 0.19837 Accuracy 1.00000
Epoch [ 8]: Loss 0.18849
Validation: Loss 0.16559 Accuracy 1.00000
Epoch [ 9]: Loss 0.15526
Validation: Loss 0.13492 Accuracy 1.00000
Epoch [ 10]: Loss 0.12455
Validation: Loss 0.10692 Accuracy 1.00000
Epoch [ 11]: Loss 0.09761
Validation: Loss 0.08220 Accuracy 1.00000
Epoch [ 12]: Loss 0.07419
Validation: Loss 0.06098 Accuracy 1.00000
Epoch [ 13]: Loss 0.05424
Validation: Loss 0.04487 Accuracy 1.00000
Epoch [ 14]: Loss 0.04037
Validation: Loss 0.03496 Accuracy 1.00000
Epoch [ 15]: Loss 0.03213
Validation: Loss 0.02889 Accuracy 1.00000
Epoch [ 16]: Loss 0.02684
Validation: Loss 0.02456 Accuracy 1.00000
Epoch [ 17]: Loss 0.02289
Validation: Loss 0.02138 Accuracy 1.00000
Epoch [ 18]: Loss 0.02015
Validation: Loss 0.01928 Accuracy 1.00000
Epoch [ 19]: Loss 0.01830
Validation: Loss 0.01768 Accuracy 1.00000
Epoch [ 20]: Loss 0.01685
Validation: Loss 0.01637 Accuracy 1.00000
Epoch [ 21]: Loss 0.01566
Validation: Loss 0.01527 Accuracy 1.00000
Epoch [ 22]: Loss 0.01463
Validation: Loss 0.01431 Accuracy 1.00000
Epoch [ 23]: Loss 0.01372
Validation: Loss 0.01347 Accuracy 1.00000
Epoch [ 24]: Loss 0.01293
Validation: Loss 0.01271 Accuracy 1.00000
Epoch [ 25]: Loss 0.01221
Validation: Loss 0.01203 Accuracy 1.00000We can also train the compact model with the exact same code!
ps_trained2, st_trained2 = main(SpiralClassifierCompact)┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore ~/work/Lux.jl/Lux.jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [ 1]: Loss 0.49986
Validation: Loss 0.46301 Accuracy 1.00000
Epoch [ 2]: Loss 0.39759
Validation: Loss 0.38119 Accuracy 1.00000
Epoch [ 3]: Loss 0.32218
Validation: Loss 0.32276 Accuracy 1.00000
Epoch [ 4]: Loss 0.26669
Validation: Loss 0.27410 Accuracy 1.00000
Epoch [ 5]: Loss 0.22613
Validation: Loss 0.22847 Accuracy 1.00000
Epoch [ 6]: Loss 0.18567
Validation: Loss 0.18457 Accuracy 1.00000
Epoch [ 7]: Loss 0.14464
Validation: Loss 0.14147 Accuracy 1.00000
Epoch [ 8]: Loss 0.11030
Validation: Loss 0.10427 Accuracy 1.00000
Epoch [ 9]: Loss 0.08028
Validation: Loss 0.07503 Accuracy 1.00000
Epoch [ 10]: Loss 0.05757
Validation: Loss 0.05221 Accuracy 1.00000
Epoch [ 11]: Loss 0.03974
Validation: Loss 0.03494 Accuracy 1.00000
Epoch [ 12]: Loss 0.02648
Validation: Loss 0.02405 Accuracy 1.00000
Epoch [ 13]: Loss 0.01921
Validation: Loss 0.01808 Accuracy 1.00000
Epoch [ 14]: Loss 0.01507
Validation: Loss 0.01443 Accuracy 1.00000
Epoch [ 15]: Loss 0.01218
Validation: Loss 0.01156 Accuracy 1.00000
Epoch [ 16]: Loss 0.00966
Validation: Loss 0.00914 Accuracy 1.00000
Epoch [ 17]: Loss 0.00767
Validation: Loss 0.00723 Accuracy 1.00000
Epoch [ 18]: Loss 0.00618
Validation: Loss 0.00588 Accuracy 1.00000
Epoch [ 19]: Loss 0.00517
Validation: Loss 0.00495 Accuracy 1.00000
Epoch [ 20]: Loss 0.00442
Validation: Loss 0.00424 Accuracy 1.00000
Epoch [ 21]: Loss 0.00380
Validation: Loss 0.00366 Accuracy 1.00000
Epoch [ 22]: Loss 0.00332
Validation: Loss 0.00319 Accuracy 1.00000
Epoch [ 23]: Loss 0.00294
Validation: Loss 0.00284 Accuracy 1.00000
Epoch [ 24]: Loss 0.00265
Validation: Loss 0.00259 Accuracy 1.00000
Epoch [ 25]: Loss 0.00243
Validation: Loss 0.00239 Accuracy 1.00000Saving the Model
We can save the model using JLD2 (and any other serialization library of your choice) Note that we transfer the model to CPU before saving. Additionally, we recommend that you don't save the model struct and only save the parameters and states.
@save "trained_model.jld2" ps_trained st_trainedLet's try loading the model
@load "trained_model.jld2" ps_trained st_trained2-element Vector{Symbol}:
:ps_trained
:st_trainedAppendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(MLDataDevices)
if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
println()
AMDGPU.versioninfo()
end
endJulia Version 1.11.8
Commit cf1da5e20e3 (2025-11-06 17:49 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 4 × AMD EPYC 7763 64-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 4 default, 0 interactive, 2 GC (on 4 virtual cores)
Environment:
JULIA_DEBUG = Literate
LD_LIBRARY_PATH =
JULIA_NUM_THREADS = 4
JULIA_CPU_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0This page was generated using Literate.jl.