Training a Simple LSTM
In this tutorial we will go over using a recurrent neural network to classify clockwise and anticlockwise spirals. By the end of this tutorial you will be able to:
Create custom Lux models.
Become familiar with the Lux recurrent neural network API.
Training using Optimisers.jl and Zygote.jl.
Package Imports
Note: If you wish to use AutoZygote() for automatic differentiation, add Zygote to your project dependencies and include using Zygote.
using ADTypes, Lux, JLD2, MLUtils, Optimisers, Printf, Reactant, RandomDataset
We will use MLUtils to generate 500 (noisy) clockwise and 500 (noisy) anticlockwise spirals. Using this data we will create a MLUtils.DataLoader. Our dataloader will give us sequences of size 2 × seq_len × batch_size and we need to predict a binary value whether the sequence is clockwise or anticlockwise.
function create_dataset(; dataset_size=1000, sequence_length=50)
# Create the spirals
data = [MLUtils.Datasets.make_spiral(sequence_length) for _ in 1:dataset_size]
# Get the labels
labels = vcat(repeat([0.0f0], dataset_size ÷ 2), repeat([1.0f0], dataset_size ÷ 2))
clockwise_spirals = [
reshape(d[1][:, 1:sequence_length], :, sequence_length, 1) for
d in data[1:(dataset_size ÷ 2)]
]
anticlockwise_spirals = [
reshape(d[1][:, (sequence_length + 1):end], :, sequence_length, 1) for
d in data[((dataset_size ÷ 2) + 1):end]
]
x_data = Float32.(cat(clockwise_spirals..., anticlockwise_spirals...; dims=3))
return x_data, labels
end
function get_dataloaders(; dataset_size=1000, sequence_length=50)
x_data, labels = create_dataset(; dataset_size, sequence_length)
# Split the dataset
(x_train, y_train), (x_val, y_val) = splitobs((x_data, labels); at=0.8, shuffle=true)
# Create DataLoaders
return (
# Use DataLoader to automatically minibatch and shuffle the data
DataLoader(
collect.((x_train, y_train)); batchsize=128, shuffle=true, partial=false
),
# Don't shuffle the validation data
DataLoader(collect.((x_val, y_val)); batchsize=128, shuffle=false, partial=false),
)
endCreating a Classifier
We will be extending the Lux.AbstractLuxContainerLayer type for our custom model since it will contain a LSTM block and a classifier head.
We pass the field names lstm_cell and classifier to the type to ensure that the parameters and states are automatically populated and we don't have to define Lux.initialparameters and Lux.initialstates.
To understand more about container layers, please look at Container Layer.
struct SpiralClassifier{L,C} <: AbstractLuxContainerLayer{(:lstm_cell, :classifier)}
lstm_cell::L
classifier::C
endWe won't define the model from scratch but rather use the Lux.LSTMCell and Lux.Dense.
function SpiralClassifier(in_dims, hidden_dims, out_dims)
return SpiralClassifier(
LSTMCell(in_dims => hidden_dims), Dense(hidden_dims => out_dims, sigmoid)
)
endWe can use default Lux blocks – Recurrence(LSTMCell(in_dims => hidden_dims) – instead of defining the following. But let's still do it for the sake of it.
Now we need to define the behavior of the Classifier when it is invoked.
function (s::SpiralClassifier)(
x::AbstractArray{T,3}, ps::NamedTuple, st::NamedTuple
) where {T}
# First we will have to run the sequence through the LSTM Cell
# The first call to LSTM Cell will create the initial hidden state
# See that the parameters and states are automatically populated into a field called
# `lstm_cell` We use `eachslice` to get the elements in the sequence without copying,
# and `Iterators.peel` to split out the first element for LSTM initialization.
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
(y, carry), st_lstm = s.lstm_cell(x_init, ps.lstm_cell, st.lstm_cell)
# Now that we have the hidden state and memory in `carry` we will pass the input and
# `carry` jointly
for x in x_rest
(y, carry), st_lstm = s.lstm_cell((x, carry), ps.lstm_cell, st_lstm)
end
# After running through the sequence we will pass the output through the classifier
y, st_classifier = s.classifier(y, ps.classifier, st.classifier)
# Finally remember to create the updated state
st = merge(st, (classifier=st_classifier, lstm_cell=st_lstm))
return vec(y), st
endUsing the @compact API
We can also define the model using the Lux.@compact API, which is a more concise way of defining models. This macro automatically handles the boilerplate code for you and as such we recommend this way of defining custom layers
function SpiralClassifierCompact(in_dims, hidden_dims, out_dims)
lstm_cell = LSTMCell(in_dims => hidden_dims)
classifier = Dense(hidden_dims => out_dims, sigmoid)
return @compact(; lstm_cell, classifier) do x::AbstractArray{T,3} where {T}
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
y, carry = lstm_cell(x_init)
for x in x_rest
y, carry = lstm_cell((x, carry))
end
@return vec(classifier(y))
end
endDefining Accuracy, Loss and Optimiser
Now let's define the binary cross-entropy loss. Typically it is recommended to use logitbinarycrossentropy since it is more numerically stable, but for the sake of simplicity we will use binarycrossentropy.
const lossfn = BinaryCrossEntropyLoss()
function compute_loss(model, ps, st, (x, y))
ŷ, st_ = model(x, ps, st)
loss = lossfn(ŷ, y)
return loss, st_, (; y_pred=ŷ)
end
matches(y_pred, y_true) = sum((y_pred .> 0.5f0) .== y_true)
accuracy(y_pred, y_true) = matches(y_pred, y_true) / length(y_pred)Training the Model
function main(model_type)
dev = reactant_device()
cdev = cpu_device()
# Get the dataloaders
train_loader, val_loader = get_dataloaders() |> dev
# Create the model
model = model_type(2, 8, 1)
ps, st = Lux.setup(Random.default_rng(), model) |> dev
train_state = Training.TrainState(model, ps, st, Adam(0.01f0))
model_compiled = if dev isa ReactantDevice
@compile model(first(train_loader)[1], ps, Lux.testmode(st))
else
model
end
ad = dev isa ReactantDevice ? AutoEnzyme() : AutoZygote()
for epoch in 1:25
# Train the model
total_loss = 0.0f0
total_samples = 0
for (x, y) in train_loader
(_, loss, _, train_state) = Training.single_train_step!(
ad, lossfn, (x, y), train_state
)
total_loss += loss * length(y)
total_samples += length(y)
end
@printf("Epoch [%3d]: Loss %4.5f\n", epoch, total_loss / total_samples)
# Validate the model
total_acc = 0.0f0
total_loss = 0.0f0
total_samples = 0
st_ = Lux.testmode(train_state.states)
for (x, y) in val_loader
ŷ, st_ = model_compiled(x, train_state.parameters, st_)
ŷ, y = cdev(ŷ), cdev(y)
total_acc += accuracy(ŷ, y) * length(y)
total_loss += lossfn(ŷ, y) * length(y)
total_samples += length(y)
end
@printf(
"Validation:\tLoss %4.5f\tAccuracy %4.5f\n",
total_loss / total_samples,
total_acc / total_samples
)
end
return (train_state.parameters, train_state.states) |> cdev
end
ps_trained, st_trained = main(SpiralClassifier)┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore ~/work/Lux.jl/Lux.jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [ 1]: Loss 0.49847
Validation: Loss 0.37191 Accuracy 1.00000
Epoch [ 2]: Loss 0.31066
Validation: Loss 0.24295 Accuracy 1.00000
Epoch [ 3]: Loss 0.21989
Validation: Loss 0.18314 Accuracy 1.00000
Epoch [ 4]: Loss 0.17249
Validation: Loss 0.14558 Accuracy 1.00000
Epoch [ 5]: Loss 0.13803
Validation: Loss 0.11845 Accuracy 1.00000
Epoch [ 6]: Loss 0.11243
Validation: Loss 0.09601 Accuracy 1.00000
Epoch [ 7]: Loss 0.09016
Validation: Loss 0.07603 Accuracy 1.00000
Epoch [ 8]: Loss 0.06971
Validation: Loss 0.05619 Accuracy 1.00000
Epoch [ 9]: Loss 0.04959
Validation: Loss 0.03862 Accuracy 1.00000
Epoch [ 10]: Loss 0.03484
Validation: Loss 0.02960 Accuracy 1.00000
Epoch [ 11]: Loss 0.02763
Validation: Loss 0.02477 Accuracy 1.00000
Epoch [ 12]: Loss 0.02350
Validation: Loss 0.02142 Accuracy 1.00000
Epoch [ 13]: Loss 0.02041
Validation: Loss 0.01872 Accuracy 1.00000
Epoch [ 14]: Loss 0.01790
Validation: Loss 0.01650 Accuracy 1.00000
Epoch [ 15]: Loss 0.01592
Validation: Loss 0.01482 Accuracy 1.00000
Epoch [ 16]: Loss 0.01435
Validation: Loss 0.01350 Accuracy 1.00000
Epoch [ 17]: Loss 0.01315
Validation: Loss 0.01240 Accuracy 1.00000
Epoch [ 18]: Loss 0.01211
Validation: Loss 0.01146 Accuracy 1.00000
Epoch [ 19]: Loss 0.01125
Validation: Loss 0.01064 Accuracy 1.00000
Epoch [ 20]: Loss 0.01046
Validation: Loss 0.00993 Accuracy 1.00000
Epoch [ 21]: Loss 0.00981
Validation: Loss 0.00930 Accuracy 1.00000
Epoch [ 22]: Loss 0.00918
Validation: Loss 0.00874 Accuracy 1.00000
Epoch [ 23]: Loss 0.00865
Validation: Loss 0.00823 Accuracy 1.00000
Epoch [ 24]: Loss 0.00814
Validation: Loss 0.00778 Accuracy 1.00000
Epoch [ 25]: Loss 0.00770
Validation: Loss 0.00736 Accuracy 1.00000We can also train the compact model with the exact same code!
ps_trained2, st_trained2 = main(SpiralClassifierCompact)┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore ~/work/Lux.jl/Lux.jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [ 1]: Loss 0.83670
Validation: Loss 0.74083 Accuracy 0.51562
Epoch [ 2]: Loss 0.68688
Validation: Loss 0.60140 Accuracy 0.51562
Epoch [ 3]: Loss 0.55429
Validation: Loss 0.48177 Accuracy 1.00000
Epoch [ 4]: Loss 0.45153
Validation: Loss 0.39969 Accuracy 1.00000
Epoch [ 5]: Loss 0.38463
Validation: Loss 0.35237 Accuracy 1.00000
Epoch [ 6]: Loss 0.34632
Validation: Loss 0.31532 Accuracy 1.00000
Epoch [ 7]: Loss 0.31024
Validation: Loss 0.28181 Accuracy 1.00000
Epoch [ 8]: Loss 0.27542
Validation: Loss 0.24293 Accuracy 1.00000
Epoch [ 9]: Loss 0.22810
Validation: Loss 0.18752 Accuracy 1.00000
Epoch [ 10]: Loss 0.16558
Validation: Loss 0.12450 Accuracy 1.00000
Epoch [ 11]: Loss 0.10887
Validation: Loss 0.08466 Accuracy 1.00000
Epoch [ 12]: Loss 0.07648
Validation: Loss 0.06374 Accuracy 1.00000
Epoch [ 13]: Loss 0.05823
Validation: Loss 0.04921 Accuracy 1.00000
Epoch [ 14]: Loss 0.04532
Validation: Loss 0.03966 Accuracy 1.00000
Epoch [ 15]: Loss 0.03754
Validation: Loss 0.03441 Accuracy 1.00000
Epoch [ 16]: Loss 0.03308
Validation: Loss 0.03065 Accuracy 1.00000
Epoch [ 17]: Loss 0.02968
Validation: Loss 0.02755 Accuracy 1.00000
Epoch [ 18]: Loss 0.02677
Validation: Loss 0.02495 Accuracy 1.00000
Epoch [ 19]: Loss 0.02426
Validation: Loss 0.02272 Accuracy 1.00000
Epoch [ 20]: Loss 0.02225
Validation: Loss 0.02083 Accuracy 1.00000
Epoch [ 21]: Loss 0.02043
Validation: Loss 0.01919 Accuracy 1.00000
Epoch [ 22]: Loss 0.01878
Validation: Loss 0.01774 Accuracy 1.00000
Epoch [ 23]: Loss 0.01743
Validation: Loss 0.01647 Accuracy 1.00000
Epoch [ 24]: Loss 0.01619
Validation: Loss 0.01533 Accuracy 1.00000
Epoch [ 25]: Loss 0.01519
Validation: Loss 0.01431 Accuracy 1.00000Saving the Model
We can save the model using JLD2 (and any other serialization library of your choice) Note that we transfer the model to CPU before saving. Additionally, we recommend that you don't save the model struct and only save the parameters and states.
@save "trained_model.jld2" ps_trained st_trainedLet's try loading the model
@load "trained_model.jld2" ps_trained st_trained2-element Vector{Symbol}:
:ps_trained
:st_trainedAppendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(MLDataDevices)
if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
println()
AMDGPU.versioninfo()
end
endJulia Version 1.11.8
Commit cf1da5e20e3 (2025-11-06 17:49 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 4 × AMD EPYC 7763 64-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 4 default, 0 interactive, 2 GC (on 4 virtual cores)
Environment:
JULIA_DEBUG = Literate
LD_LIBRARY_PATH =
JULIA_NUM_THREADS = 4
JULIA_CPU_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0This page was generated using Literate.jl.