Training a Simple LSTM
In this tutorial we will go over using a recurrent neural network to classify clockwise and anticlockwise spirals. By the end of this tutorial you will be able to:
Create custom Lux models.
Become familiar with the Lux recurrent neural network API.
Training using Optimisers.jl and Zygote.jl.
Package Imports
Note: If you wish to use AutoZygote() for automatic differentiation, add Zygote to your project dependencies and include using Zygote.
using ADTypes, Lux, JLD2, MLUtils, Optimisers, Printf, Reactant, RandomDataset
We will use MLUtils to generate 500 (noisy) clockwise and 500 (noisy) anticlockwise spirals. Using this data we will create a MLUtils.DataLoader. Our dataloader will give us sequences of size 2 × seq_len × batch_size and we need to predict a binary value whether the sequence is clockwise or anticlockwise.
function create_dataset(; dataset_size=1000, sequence_length=50)
# Create the spirals
data = [MLUtils.Datasets.make_spiral(sequence_length) for _ in 1:dataset_size]
# Get the labels
labels = vcat(repeat([0.0f0], dataset_size ÷ 2), repeat([1.0f0], dataset_size ÷ 2))
clockwise_spirals = [
reshape(d[1][:, 1:sequence_length], :, sequence_length, 1) for
d in data[1:(dataset_size ÷ 2)]
]
anticlockwise_spirals = [
reshape(d[1][:, (sequence_length + 1):end], :, sequence_length, 1) for
d in data[((dataset_size ÷ 2) + 1):end]
]
x_data = Float32.(cat(clockwise_spirals..., anticlockwise_spirals...; dims=3))
return x_data, labels
end
function get_dataloaders(; dataset_size=1000, sequence_length=50)
x_data, labels = create_dataset(; dataset_size, sequence_length)
# Split the dataset
(x_train, y_train), (x_val, y_val) = splitobs((x_data, labels); at=0.8, shuffle=true)
# Create DataLoaders
return (
# Use DataLoader to automatically minibatch and shuffle the data
DataLoader(
collect.((x_train, y_train)); batchsize=128, shuffle=true, partial=false
),
# Don't shuffle the validation data
DataLoader(collect.((x_val, y_val)); batchsize=128, shuffle=false, partial=false),
)
endCreating a Classifier
We will be extending the Lux.AbstractLuxContainerLayer type for our custom model since it will contain a LSTM block and a classifier head.
We pass the field names lstm_cell and classifier to the type to ensure that the parameters and states are automatically populated and we don't have to define Lux.initialparameters and Lux.initialstates.
To understand more about container layers, please look at Container Layer.
struct SpiralClassifier{L,C} <: AbstractLuxContainerLayer{(:lstm_cell, :classifier)}
lstm_cell::L
classifier::C
endWe won't define the model from scratch but rather use the Lux.LSTMCell and Lux.Dense.
function SpiralClassifier(in_dims, hidden_dims, out_dims)
return SpiralClassifier(
LSTMCell(in_dims => hidden_dims), Dense(hidden_dims => out_dims, sigmoid)
)
endWe can use default Lux blocks – Recurrence(LSTMCell(in_dims => hidden_dims) – instead of defining the following. But let's still do it for the sake of it.
Now we need to define the behavior of the Classifier when it is invoked.
function (s::SpiralClassifier)(
x::AbstractArray{T,3}, ps::NamedTuple, st::NamedTuple
) where {T}
# First we will have to run the sequence through the LSTM Cell
# The first call to LSTM Cell will create the initial hidden state
# See that the parameters and states are automatically populated into a field called
# `lstm_cell` We use `eachslice` to get the elements in the sequence without copying,
# and `Iterators.peel` to split out the first element for LSTM initialization.
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
(y, carry), st_lstm = s.lstm_cell(x_init, ps.lstm_cell, st.lstm_cell)
# Now that we have the hidden state and memory in `carry` we will pass the input and
# `carry` jointly
for x in x_rest
(y, carry), st_lstm = s.lstm_cell((x, carry), ps.lstm_cell, st_lstm)
end
# After running through the sequence we will pass the output through the classifier
y, st_classifier = s.classifier(y, ps.classifier, st.classifier)
# Finally remember to create the updated state
st = merge(st, (classifier=st_classifier, lstm_cell=st_lstm))
return vec(y), st
endUsing the @compact API
We can also define the model using the Lux.@compact API, which is a more concise way of defining models. This macro automatically handles the boilerplate code for you and as such we recommend this way of defining custom layers
function SpiralClassifierCompact(in_dims, hidden_dims, out_dims)
lstm_cell = LSTMCell(in_dims => hidden_dims)
classifier = Dense(hidden_dims => out_dims, sigmoid)
return @compact(; lstm_cell, classifier) do x::AbstractArray{T,3} where {T}
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
y, carry = lstm_cell(x_init)
for x in x_rest
y, carry = lstm_cell((x, carry))
end
@return vec(classifier(y))
end
endDefining Accuracy, Loss and Optimiser
Now let's define the binary cross-entropy loss. Typically it is recommended to use logitbinarycrossentropy since it is more numerically stable, but for the sake of simplicity we will use binarycrossentropy.
const lossfn = BinaryCrossEntropyLoss()
function compute_loss(model, ps, st, (x, y))
ŷ, st_ = model(x, ps, st)
loss = lossfn(ŷ, y)
return loss, st_, (; y_pred=ŷ)
end
matches(y_pred, y_true) = sum((y_pred .> 0.5f0) .== y_true)
accuracy(y_pred, y_true) = matches(y_pred, y_true) / length(y_pred)Training the Model
function main(model_type)
dev = reactant_device()
cdev = cpu_device()
# Get the dataloaders
train_loader, val_loader = get_dataloaders() |> dev
# Create the model
model = model_type(2, 8, 1)
ps, st = Lux.setup(Random.default_rng(), model) |> dev
train_state = Training.TrainState(model, ps, st, Adam(0.01f0))
model_compiled = if dev isa ReactantDevice
@compile model(first(train_loader)[1], ps, Lux.testmode(st))
else
model
end
ad = dev isa ReactantDevice ? AutoEnzyme() : AutoZygote()
for epoch in 1:25
# Train the model
total_loss = 0.0f0
total_samples = 0
for (x, y) in train_loader
(_, loss, _, train_state) = Training.single_train_step!(
ad, lossfn, (x, y), train_state
)
total_loss += loss * length(y)
total_samples += length(y)
end
@printf("Epoch [%3d]: Loss %4.5f\n", epoch, total_loss / total_samples)
# Validate the model
total_acc = 0.0f0
total_loss = 0.0f0
total_samples = 0
st_ = Lux.testmode(train_state.states)
for (x, y) in val_loader
ŷ, st_ = model_compiled(x, train_state.parameters, st_)
ŷ, y = cdev(ŷ), cdev(y)
total_acc += accuracy(ŷ, y) * length(y)
total_loss += lossfn(ŷ, y) * length(y)
total_samples += length(y)
end
@printf(
"Validation:\tLoss %4.5f\tAccuracy %4.5f\n",
total_loss / total_samples,
total_acc / total_samples
)
end
return (train_state.parameters, train_state.states) |> cdev
end
ps_trained, st_trained = main(SpiralClassifier)┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore ~/work/Lux.jl/Lux.jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [ 1]: Loss 0.50212
Validation: Loss 0.47752 Accuracy 1.00000
Epoch [ 2]: Loss 0.40272
Validation: Loss 0.39338 Accuracy 1.00000
Epoch [ 3]: Loss 0.32381
Validation: Loss 0.30736 Accuracy 1.00000
Epoch [ 4]: Loss 0.24327
Validation: Loss 0.22737 Accuracy 1.00000
Epoch [ 5]: Loss 0.18087
Validation: Loss 0.17146 Accuracy 1.00000
Epoch [ 6]: Loss 0.13492
Validation: Loss 0.13105 Accuracy 1.00000
Epoch [ 7]: Loss 0.10223
Validation: Loss 0.09862 Accuracy 1.00000
Epoch [ 8]: Loss 0.07632
Validation: Loss 0.07353 Accuracy 1.00000
Epoch [ 9]: Loss 0.05721
Validation: Loss 0.05620 Accuracy 1.00000
Epoch [ 10]: Loss 0.04477
Validation: Loss 0.04500 Accuracy 1.00000
Epoch [ 11]: Loss 0.03676
Validation: Loss 0.03743 Accuracy 1.00000
Epoch [ 12]: Loss 0.03070
Validation: Loss 0.03173 Accuracy 1.00000
Epoch [ 13]: Loss 0.02613
Validation: Loss 0.02675 Accuracy 1.00000
Epoch [ 14]: Loss 0.02222
Validation: Loss 0.02317 Accuracy 1.00000
Epoch [ 15]: Loss 0.01975
Validation: Loss 0.02092 Accuracy 1.00000
Epoch [ 16]: Loss 0.01773
Validation: Loss 0.01913 Accuracy 1.00000
Epoch [ 17]: Loss 0.01638
Validation: Loss 0.01759 Accuracy 1.00000
Epoch [ 18]: Loss 0.01503
Validation: Loss 0.01622 Accuracy 1.00000
Epoch [ 19]: Loss 0.01387
Validation: Loss 0.01495 Accuracy 1.00000
Epoch [ 20]: Loss 0.01274
Validation: Loss 0.01369 Accuracy 1.00000
Epoch [ 21]: Loss 0.01168
Validation: Loss 0.01231 Accuracy 1.00000
Epoch [ 22]: Loss 0.01036
Validation: Loss 0.01080 Accuracy 1.00000
Epoch [ 23]: Loss 0.00900
Validation: Loss 0.00919 Accuracy 1.00000
Epoch [ 24]: Loss 0.00764
Validation: Loss 0.00767 Accuracy 1.00000
Epoch [ 25]: Loss 0.00646
Validation: Loss 0.00644 Accuracy 1.00000We can also train the compact model with the exact same code!
ps_trained2, st_trained2 = main(SpiralClassifierCompact)┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore ~/work/Lux.jl/Lux.jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [ 1]: Loss 0.65785
Validation: Loss 0.62853 Accuracy 0.42188
Epoch [ 2]: Loss 0.56226
Validation: Loss 0.56215 Accuracy 0.42188
Epoch [ 3]: Loss 0.49695
Validation: Loss 0.51020 Accuracy 0.42188
Epoch [ 4]: Loss 0.44895
Validation: Loss 0.46571 Accuracy 1.00000
Epoch [ 5]: Loss 0.40329
Validation: Loss 0.42574 Accuracy 1.00000
Epoch [ 6]: Loss 0.36321
Validation: Loss 0.38633 Accuracy 1.00000
Epoch [ 7]: Loss 0.32667
Validation: Loss 0.34394 Accuracy 1.00000
Epoch [ 8]: Loss 0.28701
Validation: Loss 0.29675 Accuracy 1.00000
Epoch [ 9]: Loss 0.24235
Validation: Loss 0.24638 Accuracy 1.00000
Epoch [ 10]: Loss 0.19752
Validation: Loss 0.19851 Accuracy 1.00000
Epoch [ 11]: Loss 0.15762
Validation: Loss 0.16014 Accuracy 1.00000
Epoch [ 12]: Loss 0.12744
Validation: Loss 0.13141 Accuracy 1.00000
Epoch [ 13]: Loss 0.10497
Validation: Loss 0.10912 Accuracy 1.00000
Epoch [ 14]: Loss 0.08773
Validation: Loss 0.09177 Accuracy 1.00000
Epoch [ 15]: Loss 0.07436
Validation: Loss 0.07852 Accuracy 1.00000
Epoch [ 16]: Loss 0.06454
Validation: Loss 0.06834 Accuracy 1.00000
Epoch [ 17]: Loss 0.05638
Validation: Loss 0.06024 Accuracy 1.00000
Epoch [ 18]: Loss 0.05003
Validation: Loss 0.05384 Accuracy 1.00000
Epoch [ 19]: Loss 0.04459
Validation: Loss 0.04861 Accuracy 1.00000
Epoch [ 20]: Loss 0.04057
Validation: Loss 0.04428 Accuracy 1.00000
Epoch [ 21]: Loss 0.03710
Validation: Loss 0.04061 Accuracy 1.00000
Epoch [ 22]: Loss 0.03424
Validation: Loss 0.03749 Accuracy 1.00000
Epoch [ 23]: Loss 0.03138
Validation: Loss 0.03478 Accuracy 1.00000
Epoch [ 24]: Loss 0.02947
Validation: Loss 0.03239 Accuracy 1.00000
Epoch [ 25]: Loss 0.02765
Validation: Loss 0.03028 Accuracy 1.00000Saving the Model
We can save the model using JLD2 (and any other serialization library of your choice) Note that we transfer the model to CPU before saving. Additionally, we recommend that you don't save the model struct and only save the parameters and states.
@save "trained_model.jld2" ps_trained st_trainedLet's try loading the model
@load "trained_model.jld2" ps_trained st_trained2-element Vector{Symbol}:
:ps_trained
:st_trainedAppendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(MLDataDevices)
if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
println()
AMDGPU.versioninfo()
end
endJulia Version 1.11.8
Commit cf1da5e20e3 (2025-11-06 17:49 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 4 × AMD EPYC 7763 64-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 4 default, 0 interactive, 2 GC (on 4 virtual cores)
Environment:
JULIA_DEBUG = Literate
LD_LIBRARY_PATH =
JULIA_NUM_THREADS = 4
JULIA_CPU_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0This page was generated using Literate.jl.