Training a Simple LSTM
In this tutorial we will go over using a recurrent neural network to classify clockwise and anticlockwise spirals. By the end of this tutorial you will be able to:
Create custom Lux models.
Become familiar with the Lux recurrent neural network API.
Training using Optimisers.jl and Zygote.jl.
Package Imports
Note: If you wish to use AutoZygote() for automatic differentiation, add Zygote to your project dependencies and include using Zygote.
using ADTypes, Lux, JLD2, MLUtils, Optimisers, Printf, Reactant, RandomDataset
We will use MLUtils to generate 500 (noisy) clockwise and 500 (noisy) anticlockwise spirals. Using this data we will create a MLUtils.DataLoader. Our dataloader will give us sequences of size 2 × seq_len × batch_size and we need to predict a binary value whether the sequence is clockwise or anticlockwise.
function create_dataset(; dataset_size=1000, sequence_length=50)
# Create the spirals
data = [MLUtils.Datasets.make_spiral(sequence_length) for _ in 1:dataset_size]
# Get the labels
labels = vcat(repeat([0.0f0], dataset_size ÷ 2), repeat([1.0f0], dataset_size ÷ 2))
clockwise_spirals = [
reshape(d[1][:, 1:sequence_length], :, sequence_length, 1) for
d in data[1:(dataset_size ÷ 2)]
]
anticlockwise_spirals = [
reshape(d[1][:, (sequence_length + 1):end], :, sequence_length, 1) for
d in data[((dataset_size ÷ 2) + 1):end]
]
x_data = Float32.(cat(clockwise_spirals..., anticlockwise_spirals...; dims=3))
return x_data, labels
end
function get_dataloaders(; dataset_size=1000, sequence_length=50)
x_data, labels = create_dataset(; dataset_size, sequence_length)
# Split the dataset
(x_train, y_train), (x_val, y_val) = splitobs((x_data, labels); at=0.8, shuffle=true)
# Create DataLoaders
return (
# Use DataLoader to automatically minibatch and shuffle the data
DataLoader(
collect.((x_train, y_train)); batchsize=128, shuffle=true, partial=false
),
# Don't shuffle the validation data
DataLoader(collect.((x_val, y_val)); batchsize=128, shuffle=false, partial=false),
)
endCreating a Classifier
We will be extending the Lux.AbstractLuxContainerLayer type for our custom model since it will contain a LSTM block and a classifier head.
We pass the field names lstm_cell and classifier to the type to ensure that the parameters and states are automatically populated and we don't have to define Lux.initialparameters and Lux.initialstates.
To understand more about container layers, please look at Container Layer.
struct SpiralClassifier{L,C} <: AbstractLuxContainerLayer{(:lstm_cell, :classifier)}
lstm_cell::L
classifier::C
endWe won't define the model from scratch but rather use the Lux.LSTMCell and Lux.Dense.
function SpiralClassifier(in_dims, hidden_dims, out_dims)
return SpiralClassifier(
LSTMCell(in_dims => hidden_dims), Dense(hidden_dims => out_dims, sigmoid)
)
endWe can use default Lux blocks – Recurrence(LSTMCell(in_dims => hidden_dims) – instead of defining the following. But let's still do it for the sake of it.
Now we need to define the behavior of the Classifier when it is invoked.
function (s::SpiralClassifier)(
x::AbstractArray{T,3}, ps::NamedTuple, st::NamedTuple
) where {T}
# First we will have to run the sequence through the LSTM Cell
# The first call to LSTM Cell will create the initial hidden state
# See that the parameters and states are automatically populated into a field called
# `lstm_cell` We use `eachslice` to get the elements in the sequence without copying,
# and `Iterators.peel` to split out the first element for LSTM initialization.
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
(y, carry), st_lstm = s.lstm_cell(x_init, ps.lstm_cell, st.lstm_cell)
# Now that we have the hidden state and memory in `carry` we will pass the input and
# `carry` jointly
for x in x_rest
(y, carry), st_lstm = s.lstm_cell((x, carry), ps.lstm_cell, st_lstm)
end
# After running through the sequence we will pass the output through the classifier
y, st_classifier = s.classifier(y, ps.classifier, st.classifier)
# Finally remember to create the updated state
st = merge(st, (classifier=st_classifier, lstm_cell=st_lstm))
return vec(y), st
endUsing the @compact API
We can also define the model using the Lux.@compact API, which is a more concise way of defining models. This macro automatically handles the boilerplate code for you and as such we recommend this way of defining custom layers
function SpiralClassifierCompact(in_dims, hidden_dims, out_dims)
lstm_cell = LSTMCell(in_dims => hidden_dims)
classifier = Dense(hidden_dims => out_dims, sigmoid)
return @compact(; lstm_cell, classifier) do x::AbstractArray{T,3} where {T}
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
y, carry = lstm_cell(x_init)
for x in x_rest
y, carry = lstm_cell((x, carry))
end
@return vec(classifier(y))
end
endDefining Accuracy, Loss and Optimiser
Now let's define the binary cross-entropy loss. Typically it is recommended to use logitbinarycrossentropy since it is more numerically stable, but for the sake of simplicity we will use binarycrossentropy.
const lossfn = BinaryCrossEntropyLoss()
function compute_loss(model, ps, st, (x, y))
ŷ, st_ = model(x, ps, st)
loss = lossfn(ŷ, y)
return loss, st_, (; y_pred=ŷ)
end
matches(y_pred, y_true) = sum((y_pred .> 0.5f0) .== y_true)
accuracy(y_pred, y_true) = matches(y_pred, y_true) / length(y_pred)Training the Model
function main(model_type)
dev = reactant_device()
cdev = cpu_device()
# Get the dataloaders
train_loader, val_loader = get_dataloaders() |> dev
# Create the model
model = model_type(2, 8, 1)
ps, st = Lux.setup(Random.default_rng(), model) |> dev
train_state = Training.TrainState(model, ps, st, Adam(0.01f0))
model_compiled = if dev isa ReactantDevice
@compile model(first(train_loader)[1], ps, Lux.testmode(st))
else
model
end
ad = dev isa ReactantDevice ? AutoEnzyme() : AutoZygote()
for epoch in 1:25
# Train the model
total_loss = 0.0f0
total_samples = 0
for (x, y) in train_loader
(_, loss, _, train_state) = Training.single_train_step!(
ad, lossfn, (x, y), train_state
)
total_loss += loss * length(y)
total_samples += length(y)
end
@printf("Epoch [%3d]: Loss %4.5f\n", epoch, total_loss / total_samples)
# Validate the model
total_acc = 0.0f0
total_loss = 0.0f0
total_samples = 0
st_ = Lux.testmode(train_state.states)
for (x, y) in val_loader
ŷ, st_ = model_compiled(x, train_state.parameters, st_)
ŷ, y = cdev(ŷ), cdev(y)
total_acc += accuracy(ŷ, y) * length(y)
total_loss += lossfn(ŷ, y) * length(y)
total_samples += length(y)
end
@printf(
"Validation:\tLoss %4.5f\tAccuracy %4.5f\n",
total_loss / total_samples,
total_acc / total_samples
)
end
return (train_state.parameters, train_state.states) |> cdev
end
ps_trained, st_trained = main(SpiralClassifier)┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore ~/work/Lux.jl/Lux.jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [ 1]: Loss 0.49636
Validation: Loss 0.41364 Accuracy 1.00000
Epoch [ 2]: Loss 0.34957
Validation: Loss 0.28538 Accuracy 1.00000
Epoch [ 3]: Loss 0.24355
Validation: Loss 0.20424 Accuracy 1.00000
Epoch [ 4]: Loss 0.17615
Validation: Loss 0.15283 Accuracy 1.00000
Epoch [ 5]: Loss 0.13166
Validation: Loss 0.11539 Accuracy 1.00000
Epoch [ 6]: Loss 0.10000
Validation: Loss 0.08683 Accuracy 1.00000
Epoch [ 7]: Loss 0.07517
Validation: Loss 0.06394 Accuracy 1.00000
Epoch [ 8]: Loss 0.05502
Validation: Loss 0.04693 Accuracy 1.00000
Epoch [ 9]: Loss 0.04064
Validation: Loss 0.03470 Accuracy 1.00000
Epoch [ 10]: Loss 0.03042
Validation: Loss 0.02712 Accuracy 1.00000
Epoch [ 11]: Loss 0.02456
Validation: Loss 0.02229 Accuracy 1.00000
Epoch [ 12]: Loss 0.02047
Validation: Loss 0.01902 Accuracy 1.00000
Epoch [ 13]: Loss 0.01767
Validation: Loss 0.01664 Accuracy 1.00000
Epoch [ 14]: Loss 0.01545
Validation: Loss 0.01476 Accuracy 1.00000
Epoch [ 15]: Loss 0.01384
Validation: Loss 0.01329 Accuracy 1.00000
Epoch [ 16]: Loss 0.01246
Validation: Loss 0.01211 Accuracy 1.00000
Epoch [ 17]: Loss 0.01150
Validation: Loss 0.01112 Accuracy 1.00000
Epoch [ 18]: Loss 0.01050
Validation: Loss 0.01028 Accuracy 1.00000
Epoch [ 19]: Loss 0.00975
Validation: Loss 0.00956 Accuracy 1.00000
Epoch [ 20]: Loss 0.00913
Validation: Loss 0.00893 Accuracy 1.00000
Epoch [ 21]: Loss 0.00849
Validation: Loss 0.00837 Accuracy 1.00000
Epoch [ 22]: Loss 0.00796
Validation: Loss 0.00787 Accuracy 1.00000
Epoch [ 23]: Loss 0.00754
Validation: Loss 0.00743 Accuracy 1.00000
Epoch [ 24]: Loss 0.00709
Validation: Loss 0.00702 Accuracy 1.00000
Epoch [ 25]: Loss 0.00671
Validation: Loss 0.00665 Accuracy 1.00000We can also train the compact model with the exact same code!
ps_trained2, st_trained2 = main(SpiralClassifierCompact)┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore ~/work/Lux.jl/Lux.jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [ 1]: Loss 0.53041
Validation: Loss 0.45583 Accuracy 0.55469
Epoch [ 2]: Loss 0.48019
Validation: Loss 0.41484 Accuracy 0.55469
Epoch [ 3]: Loss 0.43721
Validation: Loss 0.37564 Accuracy 0.55469
Epoch [ 4]: Loss 0.39487
Validation: Loss 0.33824 Accuracy 1.00000
Epoch [ 5]: Loss 0.35836
Validation: Loss 0.30188 Accuracy 1.00000
Epoch [ 6]: Loss 0.32071
Validation: Loss 0.26288 Accuracy 1.00000
Epoch [ 7]: Loss 0.27459
Validation: Loss 0.22041 Accuracy 1.00000
Epoch [ 8]: Loss 0.22544
Validation: Loss 0.17659 Accuracy 1.00000
Epoch [ 9]: Loss 0.17677
Validation: Loss 0.13635 Accuracy 1.00000
Epoch [ 10]: Loss 0.13645
Validation: Loss 0.10527 Accuracy 1.00000
Epoch [ 11]: Loss 0.10600
Validation: Loss 0.08316 Accuracy 1.00000
Epoch [ 12]: Loss 0.08344
Validation: Loss 0.06591 Accuracy 1.00000
Epoch [ 13]: Loss 0.06697
Validation: Loss 0.05101 Accuracy 1.00000
Epoch [ 14]: Loss 0.05075
Validation: Loss 0.03859 Accuracy 1.00000
Epoch [ 15]: Loss 0.03837
Validation: Loss 0.03015 Accuracy 1.00000
Epoch [ 16]: Loss 0.03081
Validation: Loss 0.02459 Accuracy 1.00000
Epoch [ 17]: Loss 0.02531
Validation: Loss 0.02082 Accuracy 1.00000
Epoch [ 18]: Loss 0.02145
Validation: Loss 0.01804 Accuracy 1.00000
Epoch [ 19]: Loss 0.01891
Validation: Loss 0.01579 Accuracy 1.00000
Epoch [ 20]: Loss 0.01650
Validation: Loss 0.01375 Accuracy 1.00000
Epoch [ 21]: Loss 0.01425
Validation: Loss 0.01179 Accuracy 1.00000
Epoch [ 22]: Loss 0.01211
Validation: Loss 0.01005 Accuracy 1.00000
Epoch [ 23]: Loss 0.01022
Validation: Loss 0.00857 Accuracy 1.00000
Epoch [ 24]: Loss 0.00869
Validation: Loss 0.00739 Accuracy 1.00000
Epoch [ 25]: Loss 0.00753
Validation: Loss 0.00644 Accuracy 1.00000Saving the Model
We can save the model using JLD2 (and any other serialization library of your choice) Note that we transfer the model to CPU before saving. Additionally, we recommend that you don't save the model struct and only save the parameters and states.
@save "trained_model.jld2" ps_trained st_trainedLet's try loading the model
@load "trained_model.jld2" ps_trained st_trained2-element Vector{Symbol}:
:ps_trained
:st_trainedAppendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(MLDataDevices)
if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
println()
AMDGPU.versioninfo()
end
endJulia Version 1.11.8
Commit cf1da5e20e3 (2025-11-06 17:49 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 4 × AMD EPYC 7763 64-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 4 default, 0 interactive, 2 GC (on 4 virtual cores)
Environment:
JULIA_DEBUG = Literate
LD_LIBRARY_PATH =
JULIA_NUM_THREADS = 4
JULIA_CPU_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0This page was generated using Literate.jl.