Training a Simple LSTM
In this tutorial we will go over using a recurrent neural network to classify clockwise and anticlockwise spirals. By the end of this tutorial you will be able to:
Create custom Lux models.
Become familiar with the Lux recurrent neural network API.
Training using Optimisers.jl and Zygote.jl.
Package Imports
Note: If you wish to use AutoZygote() for automatic differentiation, add Zygote to your project dependencies and include using Zygote.
using ADTypes, Lux, JLD2, MLUtils, Optimisers, Printf, Reactant, RandomPrecompiling packages...
1345.2 ms ✓ StructUtilsTablesExt (serial)
1 dependency successfully precompiled in 1 secondsDataset
We will use MLUtils to generate 500 (noisy) clockwise and 500 (noisy) anticlockwise spirals. Using this data we will create a MLUtils.DataLoader. Our dataloader will give us sequences of size 2 × seq_len × batch_size and we need to predict a binary value whether the sequence is clockwise or anticlockwise.
function create_dataset(; dataset_size=1000, sequence_length=50)
# Create the spirals
data = [MLUtils.Datasets.make_spiral(sequence_length) for _ in 1:dataset_size]
# Get the labels
labels = vcat(repeat([0.0f0], dataset_size ÷ 2), repeat([1.0f0], dataset_size ÷ 2))
clockwise_spirals = [
reshape(d[1][:, 1:sequence_length], :, sequence_length, 1) for
d in data[1:(dataset_size ÷ 2)]
]
anticlockwise_spirals = [
reshape(d[1][:, (sequence_length + 1):end], :, sequence_length, 1) for
d in data[((dataset_size ÷ 2) + 1):end]
]
x_data = Float32.(cat(clockwise_spirals..., anticlockwise_spirals...; dims=3))
return x_data, labels
end
function get_dataloaders(; dataset_size=1000, sequence_length=50)
x_data, labels = create_dataset(; dataset_size, sequence_length)
# Split the dataset
(x_train, y_train), (x_val, y_val) = splitobs((x_data, labels); at=0.8, shuffle=true)
# Create DataLoaders
return (
# Use DataLoader to automatically minibatch and shuffle the data
DataLoader(
collect.((x_train, y_train)); batchsize=128, shuffle=true, partial=false
),
# Don't shuffle the validation data
DataLoader(collect.((x_val, y_val)); batchsize=128, shuffle=false, partial=false),
)
endCreating a Classifier
We will be extending the Lux.AbstractLuxContainerLayer type for our custom model since it will contain a LSTM block and a classifier head.
We pass the field names lstm_cell and classifier to the type to ensure that the parameters and states are automatically populated and we don't have to define Lux.initialparameters and Lux.initialstates.
To understand more about container layers, please look at Container Layer.
struct SpiralClassifier{L,C} <: AbstractLuxContainerLayer{(:lstm_cell, :classifier)}
lstm_cell::L
classifier::C
endWe won't define the model from scratch but rather use the Lux.LSTMCell and Lux.Dense.
function SpiralClassifier(in_dims, hidden_dims, out_dims)
return SpiralClassifier(
LSTMCell(in_dims => hidden_dims), Dense(hidden_dims => out_dims, sigmoid)
)
endWe can use default Lux blocks – Recurrence(LSTMCell(in_dims => hidden_dims) – instead of defining the following. But let's still do it for the sake of it.
Now we need to define the behavior of the Classifier when it is invoked.
function (s::SpiralClassifier)(
x::AbstractArray{T,3}, ps::NamedTuple, st::NamedTuple
) where {T}
# First we will have to run the sequence through the LSTM Cell
# The first call to LSTM Cell will create the initial hidden state
# See that the parameters and states are automatically populated into a field called
# `lstm_cell` We use `eachslice` to get the elements in the sequence without copying,
# and `Iterators.peel` to split out the first element for LSTM initialization.
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
(y, carry), st_lstm = s.lstm_cell(x_init, ps.lstm_cell, st.lstm_cell)
# Now that we have the hidden state and memory in `carry` we will pass the input and
# `carry` jointly
for x in x_rest
(y, carry), st_lstm = s.lstm_cell((x, carry), ps.lstm_cell, st_lstm)
end
# After running through the sequence we will pass the output through the classifier
y, st_classifier = s.classifier(y, ps.classifier, st.classifier)
# Finally remember to create the updated state
st = merge(st, (classifier=st_classifier, lstm_cell=st_lstm))
return vec(y), st
endUsing the @compact API
We can also define the model using the Lux.@compact API, which is a more concise way of defining models. This macro automatically handles the boilerplate code for you and as such we recommend this way of defining custom layers
function SpiralClassifierCompact(in_dims, hidden_dims, out_dims)
return @compact(;
lstm_cell=LSTMCell(in_dims => hidden_dims),
classifier=Dense(hidden_dims => out_dims, sigmoid)
) do x::AbstractArray{T,3} where {T}
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
y, carry = lstm_cell(x_init)
for x in x_rest
y, carry = lstm_cell((x, carry))
end
@return vec(classifier(y))
end
endDefining Accuracy, Loss and Optimiser
Now let's define the binary cross-entropy loss. Typically it is recommended to use logitbinarycrossentropy since it is more numerically stable, but for the sake of simplicity we will use binarycrossentropy.
const lossfn = BinaryCrossEntropyLoss()
function compute_loss(model, ps, st, (x, y))
ŷ, st_ = model(x, ps, st)
loss = lossfn(ŷ, y)
return loss, st_, (; y_pred=ŷ)
end
matches(y_pred, y_true) = sum((y_pred .> 0.5f0) .== y_true)
accuracy(y_pred, y_true) = matches(y_pred, y_true) / length(y_pred)Training the Model
function main(model_type)
dev = reactant_device()
cdev = cpu_device()
# Get the dataloaders
train_loader, val_loader = get_dataloaders() |> dev
# Create the model
model = model_type(2, 8, 1)
ps, st = Lux.setup(Random.default_rng(), model) |> dev
train_state = Training.TrainState(model, ps, st, Adam(0.01f0))
model_compiled = if dev isa ReactantDevice
@compile model(first(train_loader)[1], ps, Lux.testmode(st))
else
model
end
ad = dev isa ReactantDevice ? AutoReactant() : AutoZygote()
for epoch in 1:25
# Train the model
total_loss = 0.0f0
total_samples = 0
for (x, y) in train_loader
(_, loss, _, train_state) = Training.single_train_step!(
ad, lossfn, (x, y), train_state
)
total_loss += loss * length(y)
total_samples += length(y)
end
@printf("Epoch [%3d]: Loss %4.5f\n", epoch, total_loss / total_samples)
# Validate the model
total_acc = 0.0f0
total_loss = 0.0f0
total_samples = 0
st_ = Lux.testmode(train_state.states)
for (x, y) in val_loader
ŷ, st_ = model_compiled(x, train_state.parameters, st_)
ŷ, y = cdev(ŷ), cdev(y)
total_acc += accuracy(ŷ, y) * length(y)
total_loss += lossfn(ŷ, y) * length(y)
total_samples += length(y)
end
@printf(
"Validation:\tLoss %4.5f\tAccuracy %4.5f\n",
total_loss / total_samples,
total_acc / total_samples
)
end
return (train_state.parameters, train_state.states) |> cdev
end
ps_trained, st_trained = main(SpiralClassifier)┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore ~/work/Lux.jl/Lux.jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [ 1]: Loss 0.65871
Validation: Loss 0.57337 Accuracy 1.00000
Epoch [ 2]: Loss 0.51965
Validation: Loss 0.47206 Accuracy 1.00000
Epoch [ 3]: Loss 0.42746
Validation: Loss 0.39525 Accuracy 1.00000
Epoch [ 4]: Loss 0.35721
Validation: Loss 0.33374 Accuracy 1.00000
Epoch [ 5]: Loss 0.30053
Validation: Loss 0.28084 Accuracy 1.00000
Epoch [ 6]: Loss 0.24692
Validation: Loss 0.22898 Accuracy 1.00000
Epoch [ 7]: Loss 0.19862
Validation: Loss 0.17643 Accuracy 1.00000
Epoch [ 8]: Loss 0.15031
Validation: Loss 0.13364 Accuracy 1.00000
Epoch [ 9]: Loss 0.11677
Validation: Loss 0.10542 Accuracy 1.00000
Epoch [ 10]: Loss 0.09464
Validation: Loss 0.08715 Accuracy 1.00000
Epoch [ 11]: Loss 0.07875
Validation: Loss 0.07397 Accuracy 1.00000
Epoch [ 12]: Loss 0.06772
Validation: Loss 0.06363 Accuracy 1.00000
Epoch [ 13]: Loss 0.05804
Validation: Loss 0.05510 Accuracy 1.00000
Epoch [ 14]: Loss 0.05057
Validation: Loss 0.04767 Accuracy 1.00000
Epoch [ 15]: Loss 0.04344
Validation: Loss 0.04112 Accuracy 1.00000
Epoch [ 16]: Loss 0.03747
Validation: Loss 0.03552 Accuracy 1.00000
Epoch [ 17]: Loss 0.03269
Validation: Loss 0.03077 Accuracy 1.00000
Epoch [ 18]: Loss 0.02825
Validation: Loss 0.02692 Accuracy 1.00000
Epoch [ 19]: Loss 0.02495
Validation: Loss 0.02395 Accuracy 1.00000
Epoch [ 20]: Loss 0.02238
Validation: Loss 0.02158 Accuracy 1.00000
Epoch [ 21]: Loss 0.02019
Validation: Loss 0.01963 Accuracy 1.00000
Epoch [ 22]: Loss 0.01854
Validation: Loss 0.01798 Accuracy 1.00000
Epoch [ 23]: Loss 0.01698
Validation: Loss 0.01657 Accuracy 1.00000
Epoch [ 24]: Loss 0.01567
Validation: Loss 0.01536 Accuracy 1.00000
Epoch [ 25]: Loss 0.01458
Validation: Loss 0.01431 Accuracy 1.00000We can also train the compact model with the exact same code!
ps_trained2, st_trained2 = main(SpiralClassifierCompact)┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore ~/work/Lux.jl/Lux.jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [ 1]: Loss 0.64623
Validation: Loss 0.55919 Accuracy 1.00000
Epoch [ 2]: Loss 0.49907
Validation: Loss 0.42724 Accuracy 1.00000
Epoch [ 3]: Loss 0.38643
Validation: Loss 0.33868 Accuracy 1.00000
Epoch [ 4]: Loss 0.30954
Validation: Loss 0.27054 Accuracy 1.00000
Epoch [ 5]: Loss 0.24704
Validation: Loss 0.21202 Accuracy 1.00000
Epoch [ 6]: Loss 0.18944
Validation: Loss 0.16146 Accuracy 1.00000
Epoch [ 7]: Loss 0.14313
Validation: Loss 0.12125 Accuracy 1.00000
Epoch [ 8]: Loss 0.10884
Validation: Loss 0.09348 Accuracy 1.00000
Epoch [ 9]: Loss 0.08532
Validation: Loss 0.07583 Accuracy 1.00000
Epoch [ 10]: Loss 0.07003
Validation: Loss 0.06394 Accuracy 1.00000
Epoch [ 11]: Loss 0.06021
Validation: Loss 0.05529 Accuracy 1.00000
Epoch [ 12]: Loss 0.05224
Validation: Loss 0.04861 Accuracy 1.00000
Epoch [ 13]: Loss 0.04622
Validation: Loss 0.04327 Accuracy 1.00000
Epoch [ 14]: Loss 0.04117
Validation: Loss 0.03892 Accuracy 1.00000
Epoch [ 15]: Loss 0.03760
Validation: Loss 0.03530 Accuracy 1.00000
Epoch [ 16]: Loss 0.03394
Validation: Loss 0.03226 Accuracy 1.00000
Epoch [ 17]: Loss 0.03108
Validation: Loss 0.02969 Accuracy 1.00000
Epoch [ 18]: Loss 0.02867
Validation: Loss 0.02745 Accuracy 1.00000
Epoch [ 19]: Loss 0.02675
Validation: Loss 0.02549 Accuracy 1.00000
Epoch [ 20]: Loss 0.02478
Validation: Loss 0.02376 Accuracy 1.00000
Epoch [ 21]: Loss 0.02301
Validation: Loss 0.02224 Accuracy 1.00000
Epoch [ 22]: Loss 0.02146
Validation: Loss 0.02089 Accuracy 1.00000
Epoch [ 23]: Loss 0.02031
Validation: Loss 0.01967 Accuracy 1.00000
Epoch [ 24]: Loss 0.01929
Validation: Loss 0.01857 Accuracy 1.00000
Epoch [ 25]: Loss 0.01814
Validation: Loss 0.01757 Accuracy 1.00000Saving the Model
We can save the model using JLD2 (and any other serialization library of your choice) Note that we transfer the model to CPU before saving. Additionally, we recommend that you don't save the model struct and only save the parameters and states.
@save "trained_model.jld2" ps_trained st_trainedLet's try loading the model
@load "trained_model.jld2" ps_trained st_trained2-element Vector{Symbol}:
:ps_trained
:st_trainedAppendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(MLDataDevices)
if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
println()
AMDGPU.versioninfo()
end
endJulia Version 1.12.4
Commit 01a2eadb047 (2026-01-06 16:56 UTC)
Build Info:
Official https://julialang.org release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 4 × AMD EPYC 7763 64-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-18.1.7 (ORCJIT, znver3)
GC: Built with stock GC
Threads: 4 default, 1 interactive, 4 GC (on 4 virtual cores)
Environment:
JULIA_DEBUG = Literate
LD_LIBRARY_PATH =
JULIA_NUM_THREADS = 4
JULIA_CPU_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0This page was generated using Literate.jl.