Skip to content

Julia & Lux for the Uninitiated

This is a quick intro to Lux loosely based on:

  1. PyTorch's tutorial.

  2. Flux's tutorial (the link for which has now been lost to abyss).

  3. Jax's tutorial.

It introduces basic Julia programming, as well Zygote, a source-to-source automatic differentiation (AD) framework in Julia. We'll use these tools to build a very simple neural network. Let's start with importing Lux.jl

julia
using Lux, Random
Precompiling Lux...
    346.9 ms  ✓ Reexport
    408.6 ms  ✓ ConcreteStructs
    345.8 ms  ✓ SIMDTypes
    347.2 ms  ✓ IfElse
    338.1 ms  ✓ CommonWorldInvalidations
    413.0 ms  ✓ OpenLibm_jll
    355.1 ms  ✓ FastClosures
    354.5 ms  ✓ Future
    393.2 ms  ✓ ArgCheck
    486.4 ms  ✓ ConstructionBase
    466.3 ms  ✓ CompilerSupportLibraries_jll
    545.1 ms  ✓ Statistics
    698.3 ms  ✓ EnzymeCore
    376.6 ms  ✓ HashArrayMappedTries
    382.3 ms  ✓ StaticArraysCore
    380.9 ms  ✓ ManualMemory
    512.3 ms  ✓ Requires
    480.6 ms  ✓ JLLWrappers
    599.5 ms  ✓ ADTypes
    563.6 ms  ✓ Compat
    453.6 ms  ✓ NaNMath
    626.3 ms  ✓ CpuId
    627.4 ms  ✓ DocStringExtensions
    512.6 ms  ✓ ConstructionBase → ConstructionBaseLinearAlgebraExt
   1071.9 ms  ✓ IrrationalConstants
    368.7 ms  ✓ ScopedValues
    411.1 ms  ✓ DiffResults
    790.1 ms  ✓ Static
    389.4 ms  ✓ ADTypes → ADTypesEnzymeCoreExt
    444.1 ms  ✓ Adapt
    381.6 ms  ✓ ADTypes → ADTypesConstructionBaseExt
    379.2 ms  ✓ Compat → CompatLinearAlgebraExt
    804.3 ms  ✓ ThreadingUtilities
    629.9 ms  ✓ OpenSpecFun_jll
    590.8 ms  ✓ LogExpFunctions
    414.3 ms  ✓ BitTwiddlingConvenienceFunctions
    368.9 ms  ✓ EnzymeCore → AdaptExt
   1717.0 ms  ✓ UnsafeAtomics
    444.4 ms  ✓ GPUArraysCore
    529.2 ms  ✓ ArrayInterface
    601.9 ms  ✓ Functors
   1925.4 ms  ✓ MacroTools
    367.3 ms  ✓ ArrayInterface → ArrayInterfaceStaticArraysCoreExt
    486.6 ms  ✓ Atomix
    387.5 ms  ✓ ArrayInterface → ArrayInterfaceGPUArraysCoreExt
   1043.9 ms  ✓ CPUSummary
   1147.0 ms  ✓ ChainRulesCore
    654.5 ms  ✓ CommonSubexpressions
    794.1 ms  ✓ MLDataDevices
    400.4 ms  ✓ ArrayInterface → ArrayInterfaceChainRulesCoreExt
    418.9 ms  ✓ ADTypes → ADTypesChainRulesCoreExt
    607.2 ms  ✓ PolyesterWeave
   1408.7 ms  ✓ StaticArrayInterface
   1399.7 ms  ✓ Setfield
    630.8 ms  ✓ MLDataDevices → MLDataDevicesChainRulesCoreExt
   1524.9 ms  ✓ DispatchDoctor
   1208.8 ms  ✓ Optimisers
    473.3 ms  ✓ CloseOpenIntervals
   1301.8 ms  ✓ LogExpFunctions → LogExpFunctionsChainRulesCoreExt
    586.2 ms  ✓ LayoutPointers
    405.0 ms  ✓ DispatchDoctor → DispatchDoctorEnzymeCoreExt
    619.2 ms  ✓ DispatchDoctor → DispatchDoctorChainRulesCoreExt
    416.8 ms  ✓ Optimisers → OptimisersEnzymeCoreExt
    427.1 ms  ✓ Optimisers → OptimisersAdaptExt
   2562.8 ms  ✓ SpecialFunctions
   1266.8 ms  ✓ LuxCore
    906.2 ms  ✓ StrideArraysCore
    596.9 ms  ✓ DiffRules
    434.3 ms  ✓ LuxCore → LuxCoreEnzymeCoreExt
    441.3 ms  ✓ LuxCore → LuxCoreFunctorsExt
    445.5 ms  ✓ LuxCore → LuxCoreSetfieldExt
    443.8 ms  ✓ LuxCore → LuxCoreMLDataDevicesExt
    620.2 ms  ✓ LuxCore → LuxCoreChainRulesCoreExt
    688.1 ms  ✓ Polyester
   1644.8 ms  ✓ SpecialFunctions → SpecialFunctionsChainRulesCoreExt
   6032.6 ms  ✓ StaticArrays
   2563.4 ms  ✓ WeightInitializers
    583.7 ms  ✓ Adapt → AdaptStaticArraysExt
    592.3 ms  ✓ StaticArrays → StaticArraysStatisticsExt
    597.2 ms  ✓ ConstructionBase → ConstructionBaseStaticArraysExt
    614.7 ms  ✓ StaticArrays → StaticArraysChainRulesCoreExt
    646.0 ms  ✓ StaticArrayInterface → StaticArrayInterfaceStaticArraysExt
    915.5 ms  ✓ WeightInitializers → WeightInitializersChainRulesCoreExt
   3280.7 ms  ✓ ForwardDiff
    859.4 ms  ✓ ForwardDiff → ForwardDiffStaticArraysExt
   3233.8 ms  ✓ KernelAbstractions
    665.9 ms  ✓ KernelAbstractions → LinearAlgebraExt
    713.0 ms  ✓ KernelAbstractions → EnzymeExt
   5466.0 ms  ✓ NNlib
    820.2 ms  ✓ NNlib → NNlibEnzymeCoreExt
    868.4 ms  ✓ NNlib → NNlibSpecialFunctionsExt
    915.2 ms  ✓ NNlib → NNlibForwardDiffExt
   7902.4 ms  ✓ LuxLib
   9214.3 ms  ✓ Lux
  94 dependencies successfully precompiled in 35 seconds. 16 already precompiled.

Now let us control the randomness in our code using proper Pseudo Random Number Generator (PRNG)

julia
rng = Random.default_rng()
Random.seed!(rng, 0)
Random.TaskLocalRNG()

Arrays

The starting point for all of our models is the Array (sometimes referred to as a Tensor in other frameworks). This is really just a list of numbers, which might be arranged into a shape like a square. Let's write down an array with three elements.

julia
x = [1, 2, 3]
3-element Vector{Int64}:
 1
 2
 3

Here's a matrix – a square array with four elements.

julia
x = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

We often work with arrays of thousands of elements, and don't usually write them down by hand. Here's how we can create an array of 5×3 = 15 elements, each a random number from zero to one.

julia
x = rand(rng, 5, 3)
5×3 Matrix{Float64}:
 0.455238   0.746943   0.193291
 0.547642   0.746801   0.116989
 0.773354   0.97667    0.899766
 0.940585   0.0869468  0.422918
 0.0296477  0.351491   0.707534

There's a few functions like this; try replacing rand with ones, zeros, or randn.

By default, Julia works stores numbers is a high-precision format called Float64. In ML we often don't need all those digits, and can ask Julia to work with Float32 instead. We can even ask for more digits using BigFloat.

julia
x = rand(BigFloat, 5, 3)
5×3 Matrix{BigFloat}:
 0.981339    0.793159  0.459019
 0.043883    0.624384  0.56055
 0.164786    0.524008  0.0355555
 0.414769    0.577181  0.621958
 0.00823197  0.30215   0.655881
julia
x = rand(Float32, 5, 3)
5×3 Matrix{Float32}:
 0.567794   0.369178   0.342539
 0.0985227  0.201145   0.587206
 0.776598   0.148248   0.0851708
 0.723731   0.0770206  0.839303
 0.404728   0.230954   0.679087

We can ask the array how many elements it has.

julia
length(x)
15

Or, more specifically, what size it has.

julia
size(x)
(5, 3)

We sometimes want to see some elements of the array on their own.

julia
x
5×3 Matrix{Float32}:
 0.567794   0.369178   0.342539
 0.0985227  0.201145   0.587206
 0.776598   0.148248   0.0851708
 0.723731   0.0770206  0.839303
 0.404728   0.230954   0.679087
julia
x[2, 3]
0.58720636f0

This means get the second row and the third column. We can also get every row of the third column.

julia
x[:, 3]
5-element Vector{Float32}:
 0.34253937
 0.58720636
 0.085170805
 0.8393034
 0.67908657

We can add arrays, and subtract them, which adds or subtracts each element of the array.

julia
x + x
5×3 Matrix{Float32}:
 1.13559   0.738356  0.685079
 0.197045  0.40229   1.17441
 1.5532    0.296496  0.170342
 1.44746   0.154041  1.67861
 0.809456  0.461908  1.35817
julia
x - x
5×3 Matrix{Float32}:
 0.0  0.0  0.0
 0.0  0.0  0.0
 0.0  0.0  0.0
 0.0  0.0  0.0
 0.0  0.0  0.0

Julia supports a feature called broadcasting, using the . syntax. This tiles small arrays (or single numbers) to fill bigger ones.

julia
x .+ 1
5×3 Matrix{Float32}:
 1.56779  1.36918  1.34254
 1.09852  1.20114  1.58721
 1.7766   1.14825  1.08517
 1.72373  1.07702  1.8393
 1.40473  1.23095  1.67909

We can see Julia tile the column vector 1:5 across all rows of the larger array.

julia
zeros(5, 5) .+ (1:5)
5×5 Matrix{Float64}:
 1.0  1.0  1.0  1.0  1.0
 2.0  2.0  2.0  2.0  2.0
 3.0  3.0  3.0  3.0  3.0
 4.0  4.0  4.0  4.0  4.0
 5.0  5.0  5.0  5.0  5.0

The x' syntax is used to transpose a column 1:5 into an equivalent row, and Julia will tile that across columns.

julia
zeros(5, 5) .+ (1:5)'
5×5 Matrix{Float64}:
 1.0  2.0  3.0  4.0  5.0
 1.0  2.0  3.0  4.0  5.0
 1.0  2.0  3.0  4.0  5.0
 1.0  2.0  3.0  4.0  5.0
 1.0  2.0  3.0  4.0  5.0

We can use this to make a times table.

julia
(1:5) .* (1:5)'
5×5 Matrix{Int64}:
 1   2   3   4   5
 2   4   6   8  10
 3   6   9  12  15
 4   8  12  16  20
 5  10  15  20  25

Finally, and importantly for machine learning, we can conveniently do things like matrix multiply.

julia
W = randn(5, 10)
x = rand(10)
W * x
5-element Vector{Float64}:
  1.2197981041108443
 -2.62625877100596
 -2.8573820474674845
 -2.4319346874291314
  1.0108668577150213

Julia's arrays are very powerful, and you can learn more about what they can do here.

CUDA Arrays

CUDA functionality is provided separately by the CUDA.jl package. If you have a GPU and LuxCUDA is installed, Lux will provide CUDA capabilities. For additional details on backends see the manual section.

You can manually add CUDA. Once CUDA is loaded you can move any array to the GPU with the cu function (or the gpu function exported by `Lux``), and it supports all of the above operations with the same syntax.

julia
using LuxCUDA

if LuxCUDA.functional()
    x_cu = cu(rand(5, 3))
    @show x_cu
end

(Im)mutability

Lux as you might have read is Immutable by convention which means that the core library is built without any form of mutation and all functions are pure. However, we don't enforce it in any form. We do strongly recommend that users extending this framework for their respective applications don't mutate their arrays.

julia
x = reshape(1:8, 2, 4)
2×4 reshape(::UnitRange{Int64}, 2, 4) with eltype Int64:
 1  3  5  7
 2  4  6  8

To update this array, we should first copy the array.

julia
x_copy = copy(x)
view(x_copy, :, 1) .= 0

println("Original Array ", x)
println("Mutated Array ", x_copy)
Original Array [1 3 5 7; 2 4 6 8]
Mutated Array [0 3 5 7; 0 4 6 8]

Note that our current default AD engine (Zygote) is unable to differentiate through this mutation, however, for these specialized cases it is quite trivial to write custom backward passes. (This problem will be fixed once we move towards Enzyme.jl)

Managing Randomness

We rely on the Julia StdLib Random for managing the randomness in our execution. First, we create an PRNG (pseudorandom number generator) and seed it.

julia
rng = Xoshiro(0)     # Creates a Xoshiro PRNG with seed 0
Random.Xoshiro(0xdb2fa90498613fdf, 0x48d73dc42d195740, 0x8c49bc52dc8a77ea, 0x1911b814c02405e8, 0x22a21880af5dc689)

If we call any function that relies on rng and uses it via randn, rand, etc. rng will be mutated. As we have already established we care a lot about immutability, hence we should use Lux.replicate on PRNGs before using them.

First, let us run a random number generator 3 times with the replicated rng.

julia
random_vectors = Vector{Vector{Float64}}(undef, 3)
for i in 1:3
    random_vectors[i] = rand(Lux.replicate(rng), 10)
    println("Iteration $i ", random_vectors[i])
end
@assert random_vectors[1]  random_vectors[2]  random_vectors[3]
Iteration 1 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]
Iteration 2 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]
Iteration 3 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]

As expected we get the same output. We can remove the replicate call and we will get different outputs.

julia
for i in 1:3
    println("Iteration $i ", rand(rng, 10))
end
Iteration 1 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]
Iteration 2 [0.018743665453639813, 0.8601828553599953, 0.6556360448565952, 0.7746656838366666, 0.7817315740767116, 0.5553797706980106, 0.1261990389976131, 0.4488101521328277, 0.624383955429775, 0.05657739601024536]
Iteration 3 [0.19597391412112541, 0.6830945313415872, 0.6776220912718907, 0.6456416023530093, 0.6340362477836592, 0.5595843665394066, 0.5675557670686644, 0.34351700231383653, 0.7237308297251812, 0.3691778381831775]

Automatic Differentiation

Julia has quite a few (maybe too many) AD tools. For the purpose of this tutorial, we will use:

  1. ForwardDiff.jl – For Jacobian-Vector Product (JVP)

  2. Zygote.jl – For Vector-Jacobian Product (VJP)

Slight Detour: We have had several questions regarding if we will be considering any other AD system for the reverse-diff backend. For now we will stick to Zygote.jl, however once we have tested Lux extensively with Enzyme.jl, we will make the switch.

Even though, theoretically, a VJP (Vector-Jacobian product - reverse autodiff) and a JVP (Jacobian-Vector product - forward-mode autodiff) are similar—they compute a product of a Jacobian and a vector—they differ by the computational complexity of the operation. In short, when you have a large number of parameters (hence a wide matrix), a JVP is less efficient computationally than a VJP, and, conversely, a JVP is more efficient when the Jacobian matrix is a tall matrix.

julia
using ComponentArrays, ForwardDiff, Zygote
Precompiling ComponentArrays...
    876.4 ms  ✓ ComponentArrays
  1 dependency successfully precompiled in 1 seconds. 23 already precompiled.
Precompiling MLDataDevicesComponentArraysExt...
    498.7 ms  ✓ MLDataDevices → MLDataDevicesComponentArraysExt
  1 dependency successfully precompiled in 1 seconds. 26 already precompiled.
Precompiling LuxComponentArraysExt...
    502.9 ms  ✓ ComponentArrays → ComponentArraysOptimisersExt
   1362.8 ms  ✓ Lux → LuxComponentArraysExt
   2035.1 ms  ✓ ComponentArrays → ComponentArraysKernelAbstractionsExt
  3 dependencies successfully precompiled in 2 seconds. 112 already precompiled.
Precompiling Zygote...
    322.2 ms  ✓ DataValueInterfaces
    316.1 ms  ✓ IteratorInterfaceExtensions
    353.2 ms  ✓ RealDot
    360.8 ms  ✓ DataAPI
    467.1 ms  ✓ SuiteSparse_jll
    526.3 ms  ✓ AbstractFFTs
    548.5 ms  ✓ OrderedCollections
    547.6 ms  ✓ Serialization
    345.5 ms  ✓ TableTraits
    918.2 ms  ✓ FillArrays
    419.2 ms  ✓ AbstractFFTs → AbstractFFTsChainRulesCoreExt
    994.1 ms  ✓ ZygoteRules
    392.9 ms  ✓ FillArrays → FillArraysStatisticsExt
    770.4 ms  ✓ Tables
   1815.2 ms  ✓ IRTools
    714.1 ms  ✓ StructArrays
   1730.8 ms  ✓ Distributed
    388.1 ms  ✓ StructArrays → StructArraysAdaptExt
    407.6 ms  ✓ StructArrays → StructArraysLinearAlgebraExt
   3646.7 ms  ✓ SparseArrays
    599.5 ms  ✓ SuiteSparse
    618.0 ms  ✓ Adapt → AdaptSparseArraysExt
    632.5 ms  ✓ Statistics → SparseArraysExt
    648.3 ms  ✓ ChainRulesCore → ChainRulesCoreSparseArraysExt
    645.8 ms  ✓ StructArrays → StructArraysSparseArraysExt
    674.2 ms  ✓ FillArrays → FillArraysSparseArraysExt
    612.4 ms  ✓ SparseInverseSubset
   5272.7 ms  ✓ ChainRules
  24125.0 ms  ✓ Zygote
  29 dependencies successfully precompiled in 35 seconds. 41 already precompiled.
Precompiling ArrayInterfaceSparseArraysExt...
    623.3 ms  ✓ ArrayInterface → ArrayInterfaceSparseArraysExt
  1 dependency successfully precompiled in 1 seconds. 8 already precompiled.
Precompiling SparseArraysExt...
    931.5 ms  ✓ KernelAbstractions → SparseArraysExt
  1 dependency successfully precompiled in 1 seconds. 27 already precompiled.
Precompiling MLDataDevicesSparseArraysExt...
    661.8 ms  ✓ MLDataDevices → MLDataDevicesSparseArraysExt
  1 dependency successfully precompiled in 1 seconds. 18 already precompiled.
Precompiling StructArraysStaticArraysExt...
    670.7 ms  ✓ StructArrays → StructArraysStaticArraysExt
  1 dependency successfully precompiled in 1 seconds. 19 already precompiled.
Precompiling StructArraysGPUArraysCoreExt...
    678.1 ms  ✓ StructArrays → StructArraysGPUArraysCoreExt
  1 dependency successfully precompiled in 1 seconds. 34 already precompiled.
Precompiling ArrayInterfaceChainRulesExt...
    774.5 ms  ✓ ArrayInterface → ArrayInterfaceChainRulesExt
  1 dependency successfully precompiled in 1 seconds. 40 already precompiled.
Precompiling MLDataDevicesChainRulesExt...
    822.4 ms  ✓ MLDataDevices → MLDataDevicesChainRulesExt
  1 dependency successfully precompiled in 1 seconds. 41 already precompiled.
Precompiling MLDataDevicesFillArraysExt...
    428.4 ms  ✓ MLDataDevices → MLDataDevicesFillArraysExt
  1 dependency successfully precompiled in 0 seconds. 15 already precompiled.
Precompiling MLDataDevicesZygoteExt...
   1555.8 ms  ✓ MLDataDevices → MLDataDevicesZygoteExt
  1 dependency successfully precompiled in 2 seconds. 76 already precompiled.
Precompiling LuxZygoteExt...
   2632.2 ms  ✓ Lux → LuxZygoteExt
  1 dependency successfully precompiled in 3 seconds. 148 already precompiled.
Precompiling ComponentArraysZygoteExt...
   1556.2 ms  ✓ ComponentArrays → ComponentArraysZygoteExt
  1 dependency successfully precompiled in 2 seconds. 82 already precompiled.

Gradients

For our first example, consider a simple function computing f(x)=12xTx, where f(x)=x

julia
f(x) = x' * x / 2
∇f(x) = x  # `∇` can be typed as `\nabla<TAB>`
v = randn(rng, Float32, 4)
4-element Vector{Float32}:
 -0.4051151
 -0.4593922
  0.92155594
  1.1871622

Let's use ForwardDiff and Zygote to compute the gradients.

julia
println("Actual Gradient: ", ∇f(v))
println("Computed Gradient via Reverse Mode AD (Zygote): ", only(Zygote.gradient(f, v)))
println("Computed Gradient via Forward Mode AD (ForwardDiff): ", ForwardDiff.gradient(f, v))
Actual Gradient: Float32[-0.4051151, -0.4593922, 0.92155594, 1.1871622]
Computed Gradient via Reverse Mode AD (Zygote): Float32[-0.4051151, -0.4593922, 0.92155594, 1.1871622]
Computed Gradient via Forward Mode AD (ForwardDiff): Float32[-0.4051151, -0.4593922, 0.92155594, 1.1871622]

Note that AD.gradient will only work for scalar valued outputs.

Jacobian-Vector Product

I will defer the discussion on forward-mode AD to https://book.sciml.ai/notes/08-Forward-Mode_Automatic_Differentiation_(AD)_via_High_Dimensional_Algebras/. Here let us just look at a mini example on how to use it.

julia
f(x) = x .* x ./ 2
x = randn(rng, Float32, 5)
v = ones(Float32, 5)
5-element Vector{Float32}:
 1.0
 1.0
 1.0
 1.0
 1.0

Using DifferentiationInterface

While DifferentiationInterface provides these functions for a wider range of backends, we currently don't recommend using them with Lux models, since the functions presented here come with additional goodies like fast second-order derivatives.

Compute the jvp. AutoForwardDiff specifies that we want to use ForwardDiff.jl for the Jacobian-Vector Product

julia
jvp = jacobian_vector_product(f, AutoForwardDiff(), x, v)
println("JVP: ", jvp)
JVP: Float32[-0.877497, 1.1953009, -0.057005208, 0.25055695, 0.09351656]

Vector-Jacobian Product

Using the same function and inputs, let us compute the VJP.

julia
vjp = vector_jacobian_product(f, AutoZygote(), x, v)
println("VJP: ", vjp)
VJP: Float32[-0.877497, 1.1953009, -0.057005208, 0.25055695, 0.09351656]

Linear Regression

Finally, now let us consider a linear regression problem. From a set of data-points {(xi,yi),i{1,,k},xiRn,yiRm}, we try to find a set of parameters W and b, s.t. fW,b(x)=Wx+b, which minimizes the mean squared error:

L(W,b)i=1k12yifW,b(xi)22

We can write f from scratch, but to demonstrate Lux, let us use the Dense layer.

julia
model = Dense(10 => 5)

rng = Random.default_rng()
Random.seed!(rng, 0)
Random.TaskLocalRNG()

Let us initialize the parameters and states (in this case it is empty) for the model.

julia
ps, st = Lux.setup(rng, model)
ps = ComponentArray(ps)
ComponentVector{Float32}(weight = Float32[-0.48351598 0.29944375 0.44048917 0.5221656 0.20001543 0.1437841 4.8317274f-6 0.5310851 -0.30674052 0.034259234; -0.04903387 -0.4242767 0.27051234 0.40789893 -0.43846482 -0.17706361 -0.03258145 0.46514034 0.1958431 0.23992883; 0.45016125 0.48263642 -0.2990853 -0.18695377 -0.11023762 -0.4418456 0.40354207 0.25278285 0.18056087 -0.3523193; 0.05218964 -0.09701932 0.27035674 0.12589 -0.29561827 0.34717593 -0.42189494 -0.13073668 0.36829436 -0.3097294; 0.20277858 -0.51524514 -0.22635892 0.18841726 0.29828635 0.21690917 -0.04265762 -0.41919118 0.071482725 -0.45247704], bias = Float32[-0.04199602, -0.093925126, -0.0007736237, -0.19397983, 0.0066712513])

Set problem dimensions.

julia
n_samples = 20
x_dim = 10
y_dim = 5
5

Generate random ground truth W and b.

julia
W = randn(rng, Float32, y_dim, x_dim)
b = randn(rng, Float32, y_dim)
5-element Vector{Float32}:
 -0.9436797
  1.5164032
  0.011937321
  1.4339262
 -0.2771789

Generate samples with additional noise.

julia
x_samples = randn(rng, Float32, x_dim, n_samples)
y_samples = W * x_samples .+ b .+ 0.01f0 .* randn(rng, Float32, y_dim, n_samples)
println("x shape: ", size(x_samples), "; y shape: ", size(y_samples))
x shape: (10, 20); y shape: (5, 20)

For updating our parameters let's use Optimisers.jl. We will use Stochastic Gradient Descent (SGD) with a learning rate of 0.01.

julia
using Optimisers, Printf

Define the loss function

julia
lossfn = MSELoss()

println("Loss Value with ground true parameters: ", lossfn(W * x_samples .+ b, y_samples))
Loss Value with ground true parameters: 9.3742405e-5

We will train the model using our training API.

julia
function train_model!(model, ps, st, opt, nepochs::Int)
    tstate = Training.TrainState(model, ps, st, opt)
    for i in 1:nepochs
        grads, loss, _, tstate = Training.single_train_step!(
            AutoZygote(), lossfn, (x_samples, y_samples), tstate
        )
        if i % 1000 == 1 || i == nepochs
            @printf "Loss Value after %6d iterations: %.8f\n" i loss
        end
    end
    return tstate.model, tstate.parameters, tstate.states
end

model, ps, st = train_model!(model, ps, st, Descent(0.01f0), 10000)

println("Loss Value after training: ", lossfn(first(model(x_samples, ps, st)), y_samples))
Loss Value after      1 iterations: 7.80465555
Loss Value after   1001 iterations: 0.12477568
Loss Value after   2001 iterations: 0.02535537
Loss Value after   3001 iterations: 0.00914141
Loss Value after   4001 iterations: 0.00407581
Loss Value after   5001 iterations: 0.00198415
Loss Value after   6001 iterations: 0.00101147
Loss Value after   7001 iterations: 0.00053332
Loss Value after   8001 iterations: 0.00029203
Loss Value after   9001 iterations: 0.00016878
Loss Value after  10000 iterations: 0.00010551
Loss Value after training: 0.00010546855

Appendix

julia
using InteractiveUtils
InteractiveUtils.versioninfo()

if @isdefined(MLDataDevices)
    if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
        println()
        CUDA.versioninfo()
    end

    if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
        println()
        AMDGPU.versioninfo()
    end
end
Julia Version 1.11.4
Commit 8561cc3d68d (2025-03-10 11:36 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 128 × AMD EPYC 7502 32-Core Processor
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver2)
Threads: 128 default, 0 interactive, 64 GC (on 128 virtual cores)
Environment:
  JULIA_CPU_THREADS = 128
  JULIA_DEPOT_PATH = /cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
  JULIA_PKG_SERVER = 
  JULIA_NUM_THREADS = 128
  JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
  JULIA_PKG_PRECOMPILE_AUTO = 0
  JULIA_DEBUG = Literate

This page was generated using Literate.jl.