Skip to content

Julia & Lux for the Uninitiated

This is a quick intro to Lux loosely based on:

  1. PyTorch's tutorial.

  2. Flux's tutorial (the link for which has now been lost to abyss).

  3. Jax's tutorial.

It introduces basic Julia programming, as well Zygote, a source-to-source automatic differentiation (AD) framework in Julia. We'll use these tools to build a very simple neural network. Let's start with importing Lux.jl

julia
using Lux, Random
Precompiling Lux...
    419.1 ms  ✓ ConcreteStructs
    334.5 ms  ✓ SIMDTypes
    338.2 ms  ✓ Reexport
    354.5 ms  ✓ Future
    379.6 ms  ✓ OpenLibm_jll
    381.1 ms  ✓ CEnum
    389.4 ms  ✓ ManualMemory
    398.4 ms  ✓ ArgCheck
    469.1 ms  ✓ CompilerSupportLibraries_jll
    472.8 ms  ✓ Requires
    539.3 ms  ✓ Statistics
    571.7 ms  ✓ EnzymeCore
    600.1 ms  ✓ ADTypes
    332.9 ms  ✓ IfElse
    332.4 ms  ✓ FastClosures
    345.8 ms  ✓ CommonWorldInvalidations
    401.4 ms  ✓ StaticArraysCore
    443.2 ms  ✓ ConstructionBase
    446.0 ms  ✓ NaNMath
    482.9 ms  ✓ JLLWrappers
    560.7 ms  ✓ Compat
    388.8 ms  ✓ ADTypes → ADTypesEnzymeCoreExt
    433.6 ms  ✓ Adapt
    637.2 ms  ✓ CpuId
    641.5 ms  ✓ DocStringExtensions
   1056.7 ms  ✓ IrrationalConstants
    379.9 ms  ✓ ConstructionBase → ConstructionBaseLinearAlgebraExt
    390.1 ms  ✓ ADTypes → ADTypesConstructionBaseExt
    403.9 ms  ✓ DiffResults
    795.5 ms  ✓ ThreadingUtilities
    377.5 ms  ✓ Compat → CompatLinearAlgebraExt
    382.7 ms  ✓ EnzymeCore → AdaptExt
    781.6 ms  ✓ Static
    454.9 ms  ✓ GPUArraysCore
    524.5 ms  ✓ ArrayInterface
    589.7 ms  ✓ Hwloc_jll
    625.0 ms  ✓ OpenSpecFun_jll
    574.8 ms  ✓ LogExpFunctions
   1724.8 ms  ✓ UnsafeAtomics
    411.1 ms  ✓ BitTwiddlingConvenienceFunctions
    361.5 ms  ✓ ArrayInterface → ArrayInterfaceGPUArraysCoreExt
    363.8 ms  ✓ ArrayInterface → ArrayInterfaceStaticArraysCoreExt
    601.2 ms  ✓ Functors
   1940.2 ms  ✓ MacroTools
    486.2 ms  ✓ Atomix
   1135.9 ms  ✓ ChainRulesCore
   1026.9 ms  ✓ CPUSummary
    646.1 ms  ✓ CommonSubexpressions
    801.3 ms  ✓ MLDataDevices
    392.5 ms  ✓ ArrayInterface → ArrayInterfaceChainRulesCoreExt
    403.1 ms  ✓ ADTypes → ADTypesChainRulesCoreExt
   1508.3 ms  ✓ StaticArrayInterface
    602.6 ms  ✓ PolyesterWeave
   1392.2 ms  ✓ Setfield
    632.8 ms  ✓ MLDataDevices → MLDataDevicesChainRulesCoreExt
   1512.2 ms  ✓ DispatchDoctor
    479.7 ms  ✓ CloseOpenIntervals
   1983.5 ms  ✓ Hwloc
    581.0 ms  ✓ LayoutPointers
   1204.3 ms  ✓ Optimisers
   1292.5 ms  ✓ LogExpFunctions → LogExpFunctionsChainRulesCoreExt
    424.9 ms  ✓ DispatchDoctor → DispatchDoctorEnzymeCoreExt
   2436.1 ms  ✓ SpecialFunctions
    622.9 ms  ✓ DispatchDoctor → DispatchDoctorChainRulesCoreExt
    413.8 ms  ✓ Optimisers → OptimisersAdaptExt
    422.6 ms  ✓ Optimisers → OptimisersEnzymeCoreExt
    984.7 ms  ✓ StrideArraysCore
   1165.6 ms  ✓ LuxCore
    595.9 ms  ✓ DiffRules
    420.1 ms  ✓ LuxCore → LuxCoreEnzymeCoreExt
    432.7 ms  ✓ LuxCore → LuxCoreFunctorsExt
    442.5 ms  ✓ LuxCore → LuxCoreMLDataDevicesExt
    470.3 ms  ✓ LuxCore → LuxCoreSetfieldExt
    586.4 ms  ✓ LuxCore → LuxCoreChainRulesCoreExt
    806.7 ms  ✓ Polyester
   1660.0 ms  ✓ SpecialFunctions → SpecialFunctionsChainRulesCoreExt
   2680.4 ms  ✓ WeightInitializers
   6016.6 ms  ✓ StaticArrays
    579.0 ms  ✓ Adapt → AdaptStaticArraysExt
    584.9 ms  ✓ StaticArrays → StaticArraysStatisticsExt
    589.6 ms  ✓ ConstructionBase → ConstructionBaseStaticArraysExt
    605.3 ms  ✓ StaticArrays → StaticArraysChainRulesCoreExt
    641.3 ms  ✓ StaticArrayInterface → StaticArrayInterfaceStaticArraysExt
    920.9 ms  ✓ WeightInitializers → WeightInitializersChainRulesCoreExt
   3478.3 ms  ✓ ForwardDiff
    851.7 ms  ✓ ForwardDiff → ForwardDiffStaticArraysExt
   3220.0 ms  ✓ KernelAbstractions
    647.2 ms  ✓ KernelAbstractions → LinearAlgebraExt
    696.1 ms  ✓ KernelAbstractions → EnzymeExt
   5375.1 ms  ✓ NNlib
    811.7 ms  ✓ NNlib → NNlibEnzymeCoreExt
    869.2 ms  ✓ NNlib → NNlibSpecialFunctionsExt
    908.5 ms  ✓ NNlib → NNlibForwardDiffExt
   6199.8 ms  ✓ LuxLib
   9083.9 ms  ✓ Lux
  95 dependencies successfully precompiled in 33 seconds. 15 already precompiled.

Now let us control the randomness in our code using proper Pseudo Random Number Generator (PRNG)

julia
rng = Random.default_rng()
Random.seed!(rng, 0)
Random.TaskLocalRNG()

Arrays

The starting point for all of our models is the Array (sometimes referred to as a Tensor in other frameworks). This is really just a list of numbers, which might be arranged into a shape like a square. Let's write down an array with three elements.

julia
x = [1, 2, 3]
3-element Vector{Int64}:
 1
 2
 3

Here's a matrix – a square array with four elements.

julia
x = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

We often work with arrays of thousands of elements, and don't usually write them down by hand. Here's how we can create an array of 5×3 = 15 elements, each a random number from zero to one.

julia
x = rand(rng, 5, 3)
5×3 Matrix{Float64}:
 0.455238   0.746943   0.193291
 0.547642   0.746801   0.116989
 0.773354   0.97667    0.899766
 0.940585   0.0869468  0.422918
 0.0296477  0.351491   0.707534

There's a few functions like this; try replacing rand with ones, zeros, or randn.

By default, Julia works stores numbers is a high-precision format called Float64. In ML we often don't need all those digits, and can ask Julia to work with Float32 instead. We can even ask for more digits using BigFloat.

julia
x = rand(BigFloat, 5, 3)
5×3 Matrix{BigFloat}:
 0.981339    0.793159  0.459019
 0.043883    0.624384  0.56055
 0.164786    0.524008  0.0355555
 0.414769    0.577181  0.621958
 0.00823197  0.30215   0.655881
julia
x = rand(Float32, 5, 3)
5×3 Matrix{Float32}:
 0.567794   0.369178   0.342539
 0.0985227  0.201145   0.587206
 0.776598   0.148248   0.0851708
 0.723731   0.0770206  0.839303
 0.404728   0.230954   0.679087

We can ask the array how many elements it has.

julia
length(x)
15

Or, more specifically, what size it has.

julia
size(x)
(5, 3)

We sometimes want to see some elements of the array on their own.

julia
x
5×3 Matrix{Float32}:
 0.567794   0.369178   0.342539
 0.0985227  0.201145   0.587206
 0.776598   0.148248   0.0851708
 0.723731   0.0770206  0.839303
 0.404728   0.230954   0.679087
julia
x[2, 3]
0.58720636f0

This means get the second row and the third column. We can also get every row of the third column.

julia
x[:, 3]
5-element Vector{Float32}:
 0.34253937
 0.58720636
 0.085170805
 0.8393034
 0.67908657

We can add arrays, and subtract them, which adds or subtracts each element of the array.

julia
x + x
5×3 Matrix{Float32}:
 1.13559   0.738356  0.685079
 0.197045  0.40229   1.17441
 1.5532    0.296496  0.170342
 1.44746   0.154041  1.67861
 0.809456  0.461908  1.35817
julia
x - x
5×3 Matrix{Float32}:
 0.0  0.0  0.0
 0.0  0.0  0.0
 0.0  0.0  0.0
 0.0  0.0  0.0
 0.0  0.0  0.0

Julia supports a feature called broadcasting, using the . syntax. This tiles small arrays (or single numbers) to fill bigger ones.

julia
x .+ 1
5×3 Matrix{Float32}:
 1.56779  1.36918  1.34254
 1.09852  1.20114  1.58721
 1.7766   1.14825  1.08517
 1.72373  1.07702  1.8393
 1.40473  1.23095  1.67909

We can see Julia tile the column vector 1:5 across all rows of the larger array.

julia
zeros(5, 5) .+ (1:5)
5×5 Matrix{Float64}:
 1.0  1.0  1.0  1.0  1.0
 2.0  2.0  2.0  2.0  2.0
 3.0  3.0  3.0  3.0  3.0
 4.0  4.0  4.0  4.0  4.0
 5.0  5.0  5.0  5.0  5.0

The x' syntax is used to transpose a column 1:5 into an equivalent row, and Julia will tile that across columns.

julia
zeros(5, 5) .+ (1:5)'
5×5 Matrix{Float64}:
 1.0  2.0  3.0  4.0  5.0
 1.0  2.0  3.0  4.0  5.0
 1.0  2.0  3.0  4.0  5.0
 1.0  2.0  3.0  4.0  5.0
 1.0  2.0  3.0  4.0  5.0

We can use this to make a times table.

julia
(1:5) .* (1:5)'
5×5 Matrix{Int64}:
 1   2   3   4   5
 2   4   6   8  10
 3   6   9  12  15
 4   8  12  16  20
 5  10  15  20  25

Finally, and importantly for machine learning, we can conveniently do things like matrix multiply.

julia
W = randn(5, 10)
x = rand(10)
W * x
5-element Vector{Float64}:
  1.2197981041108443
 -2.62625877100596
 -2.8573820474674845
 -2.4319346874291314
  1.0108668577150213

Julia's arrays are very powerful, and you can learn more about what they can do here.

CUDA Arrays

CUDA functionality is provided separately by the CUDA.jl package. If you have a GPU and LuxCUDA is installed, Lux will provide CUDA capabilities. For additional details on backends see the manual section.

You can manually add CUDA. Once CUDA is loaded you can move any array to the GPU with the cu function (or the gpu function exported by `Lux``), and it supports all of the above operations with the same syntax.

julia
using LuxCUDA

if LuxCUDA.functional()
    x_cu = cu(rand(5, 3))
    @show x_cu
end

(Im)mutability

Lux as you might have read is Immutable by convention which means that the core library is built without any form of mutation and all functions are pure. However, we don't enforce it in any form. We do strongly recommend that users extending this framework for their respective applications don't mutate their arrays.

julia
x = reshape(1:8, 2, 4)
2×4 reshape(::UnitRange{Int64}, 2, 4) with eltype Int64:
 1  3  5  7
 2  4  6  8

To update this array, we should first copy the array.

julia
x_copy = copy(x)
view(x_copy, :, 1) .= 0

println("Original Array ", x)
println("Mutated Array ", x_copy)
Original Array [1 3 5 7; 2 4 6 8]
Mutated Array [0 3 5 7; 0 4 6 8]

Note that our current default AD engine (Zygote) is unable to differentiate through this mutation, however, for these specialized cases it is quite trivial to write custom backward passes. (This problem will be fixed once we move towards Enzyme.jl)

Managing Randomness

We rely on the Julia StdLib Random for managing the randomness in our execution. First, we create an PRNG (pseudorandom number generator) and seed it.

julia
rng = Xoshiro(0)     # Creates a Xoshiro PRNG with seed 0
Random.Xoshiro(0xdb2fa90498613fdf, 0x48d73dc42d195740, 0x8c49bc52dc8a77ea, 0x1911b814c02405e8, 0x22a21880af5dc689)

If we call any function that relies on rng and uses it via randn, rand, etc. rng will be mutated. As we have already established we care a lot about immutability, hence we should use Lux.replicate on PRNGs before using them.

First, let us run a random number generator 3 times with the replicated rng.

julia
random_vectors = Vector{Vector{Float64}}(undef, 3)
for i in 1:3
    random_vectors[i] = rand(Lux.replicate(rng), 10)
    println("Iteration $i ", random_vectors[i])
end
@assert random_vectors[1]  random_vectors[2]  random_vectors[3]
Iteration 1 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]
Iteration 2 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]
Iteration 3 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]

As expected we get the same output. We can remove the replicate call and we will get different outputs.

julia
for i in 1:3
    println("Iteration $i ", rand(rng, 10))
end
Iteration 1 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]
Iteration 2 [0.018743665453639813, 0.8601828553599953, 0.6556360448565952, 0.7746656838366666, 0.7817315740767116, 0.5553797706980106, 0.1261990389976131, 0.4488101521328277, 0.624383955429775, 0.05657739601024536]
Iteration 3 [0.19597391412112541, 0.6830945313415872, 0.6776220912718907, 0.6456416023530093, 0.6340362477836592, 0.5595843665394066, 0.5675557670686644, 0.34351700231383653, 0.7237308297251812, 0.3691778381831775]

Automatic Differentiation

Julia has quite a few (maybe too many) AD tools. For the purpose of this tutorial, we will use:

  1. ForwardDiff.jl – For Jacobian-Vector Product (JVP)

  2. Zygote.jl – For Vector-Jacobian Product (VJP)

Slight Detour: We have had several questions regarding if we will be considering any other AD system for the reverse-diff backend. For now we will stick to Zygote.jl, however once we have tested Lux extensively with Enzyme.jl, we will make the switch.

Even though, theoretically, a VJP (Vector-Jacobian product - reverse autodiff) and a JVP (Jacobian-Vector product - forward-mode autodiff) are similar—they compute a product of a Jacobian and a vector—they differ by the computational complexity of the operation. In short, when you have a large number of parameters (hence a wide matrix), a JVP is less efficient computationally than a VJP, and, conversely, a JVP is more efficient when the Jacobian matrix is a tall matrix.

julia
using ComponentArrays, ForwardDiff, Zygote
Precompiling ComponentArrays...
    868.1 ms  ✓ ComponentArrays
  1 dependency successfully precompiled in 1 seconds. 45 already precompiled.
Precompiling MLDataDevicesComponentArraysExt...
    490.9 ms  ✓ MLDataDevices → MLDataDevicesComponentArraysExt
  1 dependency successfully precompiled in 1 seconds. 48 already precompiled.
Precompiling LuxComponentArraysExt...
    495.1 ms  ✓ ComponentArrays → ComponentArraysOptimisersExt
   1373.1 ms  ✓ Lux → LuxComponentArraysExt
   2033.0 ms  ✓ ComponentArrays → ComponentArraysKernelAbstractionsExt
  3 dependencies successfully precompiled in 2 seconds. 112 already precompiled.
Precompiling Zygote...
    320.4 ms  ✓ DataValueInterfaces
    333.2 ms  ✓ IteratorInterfaceExtensions
    354.0 ms  ✓ RealDot
    381.6 ms  ✓ Zlib_jll
    380.8 ms  ✓ DataAPI
    393.3 ms  ✓ HashArrayMappedTries
    447.5 ms  ✓ SuiteSparse_jll
    526.6 ms  ✓ AbstractFFTs
    597.8 ms  ✓ OrderedCollections
    600.8 ms  ✓ Serialization
    361.4 ms  ✓ TableTraits
    345.3 ms  ✓ ScopedValues
    899.8 ms  ✓ FillArrays
    415.6 ms  ✓ AbstractFFTs → AbstractFFTsChainRulesCoreExt
    980.0 ms  ✓ ZygoteRules
    394.2 ms  ✓ FillArrays → FillArraysStatisticsExt
    954.3 ms  ✓ LazyArtifacts
    772.8 ms  ✓ Tables
   1834.4 ms  ✓ IRTools
    714.2 ms  ✓ StructArrays
   1736.0 ms  ✓ Distributed
    389.3 ms  ✓ StructArrays → StructArraysAdaptExt
    393.0 ms  ✓ StructArrays → StructArraysLinearAlgebraExt
   1363.1 ms  ✓ LLVMExtra_jll
    649.6 ms  ✓ StructArrays → StructArraysStaticArraysExt
    671.5 ms  ✓ StructArrays → StructArraysGPUArraysCoreExt
   3618.1 ms  ✓ SparseArrays
    586.4 ms  ✓ SuiteSparse
    611.9 ms  ✓ Adapt → AdaptSparseArraysExt
    630.8 ms  ✓ Statistics → SparseArraysExt
    624.3 ms  ✓ StructArrays → StructArraysSparseArraysExt
    634.2 ms  ✓ ChainRulesCore → ChainRulesCoreSparseArraysExt
    675.8 ms  ✓ FillArrays → FillArraysSparseArraysExt
    911.9 ms  ✓ KernelAbstractions → SparseArraysExt
    611.3 ms  ✓ SparseInverseSubset
   5730.6 ms  ✓ LLVM
   1729.0 ms  ✓ UnsafeAtomics → UnsafeAtomicsLLVM
   5264.3 ms  ✓ ChainRules
   4508.1 ms  ✓ GPUArrays
  24080.9 ms  ✓ Zygote
  40 dependencies successfully precompiled in 39 seconds. 63 already precompiled.
Precompiling ArrayInterfaceSparseArraysExt...
    614.3 ms  ✓ ArrayInterface → ArrayInterfaceSparseArraysExt
  1 dependency successfully precompiled in 1 seconds. 8 already precompiled.
Precompiling MLDataDevicesSparseArraysExt...
    651.8 ms  ✓ MLDataDevices → MLDataDevicesSparseArraysExt
  1 dependency successfully precompiled in 1 seconds. 18 already precompiled.
Precompiling ArrayInterfaceChainRulesExt...
    769.0 ms  ✓ ArrayInterface → ArrayInterfaceChainRulesExt
  1 dependency successfully precompiled in 1 seconds. 40 already precompiled.
Precompiling MLDataDevicesChainRulesExt...
    806.3 ms  ✓ MLDataDevices → MLDataDevicesChainRulesExt
  1 dependency successfully precompiled in 1 seconds. 41 already precompiled.
Precompiling MLDataDevicesFillArraysExt...
    433.2 ms  ✓ MLDataDevices → MLDataDevicesFillArraysExt
  1 dependency successfully precompiled in 0 seconds. 15 already precompiled.
Precompiling MLDataDevicesZygoteExt...
   1527.3 ms  ✓ MLDataDevices → MLDataDevicesGPUArraysExt
   1550.0 ms  ✓ MLDataDevices → MLDataDevicesZygoteExt
  2 dependencies successfully precompiled in 2 seconds. 109 already precompiled.
Precompiling LuxZygoteExt...
   1630.0 ms  ✓ WeightInitializers → WeightInitializersGPUArraysExt
   2774.8 ms  ✓ Lux → LuxZygoteExt
  2 dependencies successfully precompiled in 3 seconds. 167 already precompiled.
Precompiling ComponentArraysZygoteExt...
   1547.7 ms  ✓ ComponentArrays → ComponentArraysZygoteExt
   1772.2 ms  ✓ ComponentArrays → ComponentArraysGPUArraysExt
  2 dependencies successfully precompiled in 2 seconds. 117 already precompiled.

Gradients

For our first example, consider a simple function computing f(x)=12xTx, where f(x)=x

julia
f(x) = x' * x / 2
∇f(x) = x  # `∇` can be typed as `\nabla<TAB>`
v = randn(rng, Float32, 4)
4-element Vector{Float32}:
 -0.4051151
 -0.4593922
  0.92155594
  1.1871622

Let's use ForwardDiff and Zygote to compute the gradients.

julia
println("Actual Gradient: ", ∇f(v))
println("Computed Gradient via Reverse Mode AD (Zygote): ", only(Zygote.gradient(f, v)))
println("Computed Gradient via Forward Mode AD (ForwardDiff): ", ForwardDiff.gradient(f, v))
Actual Gradient: Float32[-0.4051151, -0.4593922, 0.92155594, 1.1871622]
Computed Gradient via Reverse Mode AD (Zygote): Float32[-0.4051151, -0.4593922, 0.92155594, 1.1871622]
Computed Gradient via Forward Mode AD (ForwardDiff): Float32[-0.4051151, -0.4593922, 0.92155594, 1.1871622]

Note that AD.gradient will only work for scalar valued outputs.

Jacobian-Vector Product

I will defer the discussion on forward-mode AD to https://book.sciml.ai/notes/08-Forward-Mode_Automatic_Differentiation_(AD)_via_High_Dimensional_Algebras/. Here let us just look at a mini example on how to use it.

julia
f(x) = x .* x ./ 2
x = randn(rng, Float32, 5)
v = ones(Float32, 5)
5-element Vector{Float32}:
 1.0
 1.0
 1.0
 1.0
 1.0

Using DifferentiationInterface

While DifferentiationInterface provides these functions for a wider range of backends, we currently don't recommend using them with Lux models, since the functions presented here come with additional goodies like fast second-order derivatives.

Compute the jvp. AutoForwardDiff specifies that we want to use ForwardDiff.jl for the Jacobian-Vector Product

julia
jvp = jacobian_vector_product(f, AutoForwardDiff(), x, v)
println("JVP: ", jvp)
JVP: Float32[-0.877497, 1.1953009, -0.057005208, 0.25055695, 0.09351656]

Vector-Jacobian Product

Using the same function and inputs, let us compute the VJP.

julia
vjp = vector_jacobian_product(f, AutoZygote(), x, v)
println("VJP: ", vjp)
VJP: Float32[-0.877497, 1.1953009, -0.057005208, 0.25055695, 0.09351656]

Linear Regression

Finally, now let us consider a linear regression problem. From a set of data-points {(xi,yi),i{1,,k},xiRn,yiRm}, we try to find a set of parameters W and b, s.t. fW,b(x)=Wx+b, which minimizes the mean squared error:

L(W,b)i=1k12yifW,b(xi)22

We can write f from scratch, but to demonstrate Lux, let us use the Dense layer.

julia
model = Dense(10 => 5)

rng = Random.default_rng()
Random.seed!(rng, 0)
Random.TaskLocalRNG()

Let us initialize the parameters and states (in this case it is empty) for the model.

julia
ps, st = Lux.setup(rng, model)
ps = ps |> ComponentArray
ComponentVector{Float32}(weight = Float32[-0.48351598 0.29944375 0.44048917 0.5221656 0.20001543 0.1437841 4.8317274f-6 0.5310851 -0.30674052 0.034259234; -0.04903387 -0.4242767 0.27051234 0.40789893 -0.43846482 -0.17706361 -0.03258145 0.46514034 0.1958431 0.23992883; 0.45016125 0.48263642 -0.2990853 -0.18695377 -0.11023762 -0.4418456 0.40354207 0.25278285 0.18056087 -0.3523193; 0.05218964 -0.09701932 0.27035674 0.12589 -0.29561827 0.34717593 -0.42189494 -0.13073668 0.36829436 -0.3097294; 0.20277858 -0.51524514 -0.22635892 0.18841726 0.29828635 0.21690917 -0.04265762 -0.41919118 0.071482725 -0.45247704], bias = Float32[-0.04199602, -0.093925126, -0.0007736237, -0.19397983, 0.0066712513])

Set problem dimensions.

julia
n_samples = 20
x_dim = 10
y_dim = 5
5

Generate random ground truth W and b.

julia
W = randn(rng, Float32, y_dim, x_dim)
b = randn(rng, Float32, y_dim)
5-element Vector{Float32}:
 -0.9436797
  1.5164032
  0.011937321
  1.4339262
 -0.2771789

Generate samples with additional noise.

julia
x_samples = randn(rng, Float32, x_dim, n_samples)
y_samples = W * x_samples .+ b .+ 0.01f0 .* randn(rng, Float32, y_dim, n_samples)
println("x shape: ", size(x_samples), "; y shape: ", size(y_samples))
x shape: (10, 20); y shape: (5, 20)

For updating our parameters let's use Optimisers.jl. We will use Stochastic Gradient Descent (SGD) with a learning rate of 0.01.

julia
using Optimisers, Printf

Define the loss function

julia
lossfn = MSELoss()

println("Loss Value with ground true parameters: ", lossfn(W * x_samples .+ b, y_samples))
Loss Value with ground true parameters: 9.3742405e-5

We will train the model using our training API.

julia
function train_model!(model, ps, st, opt, nepochs::Int)
    tstate = Training.TrainState(model, ps, st, opt)
    for i in 1:nepochs
        grads, loss, _, tstate = Training.single_train_step!(
            AutoZygote(), lossfn, (x_samples, y_samples), tstate
        )
        if i % 1000 == 1 || i == nepochs
            @printf "Loss Value after %6d iterations: %.8f\n" i loss
        end
    end
    return tstate.model, tstate.parameters, tstate.states
end

model, ps, st = train_model!(model, ps, st, Descent(0.01f0), 10000)

println("Loss Value after training: ", lossfn(first(model(x_samples, ps, st)), y_samples))
Loss Value after      1 iterations: 7.80465555
Loss Value after   1001 iterations: 0.12477568
Loss Value after   2001 iterations: 0.02535537
Loss Value after   3001 iterations: 0.00914141
Loss Value after   4001 iterations: 0.00407581
Loss Value after   5001 iterations: 0.00198415
Loss Value after   6001 iterations: 0.00101147
Loss Value after   7001 iterations: 0.00053332
Loss Value after   8001 iterations: 0.00029203
Loss Value after   9001 iterations: 0.00016878
Loss Value after  10000 iterations: 0.00010551
Loss Value after training: 0.00010546855

Appendix

julia
using InteractiveUtils
InteractiveUtils.versioninfo()

if @isdefined(MLDataDevices)
    if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
        println()
        CUDA.versioninfo()
    end

    if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
        println()
        AMDGPU.versioninfo()
    end
end
Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 128 × AMD EPYC 7502 32-Core Processor
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver2)
Threads: 128 default, 0 interactive, 64 GC (on 128 virtual cores)
Environment:
  JULIA_CPU_THREADS = 128
  JULIA_DEPOT_PATH = /cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
  JULIA_PKG_SERVER = 
  JULIA_NUM_THREADS = 128
  JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
  JULIA_PKG_PRECOMPILE_AUTO = 0
  JULIA_DEBUG = Literate

This page was generated using Literate.jl.