MNIST Classification with SimpleChains
SimpleChains.jl is an excellent framework for training small neural networks. In this tutorial we will demonstrate how to use the same API as Lux.jl to train a model using SimpleChains.jl. We will use the tutorial from SimpleChains.jl as a reference.
Package Imports
using Lux, ADTypes, MLUtils, Optimisers, Zygote, OneHotArrays, Random, Statistics, Printf
using MLDatasets: MNIST
using SimpleChains: SimpleChains
Loading MNIST
function loadmnist(batchsize, train_split)
# Load MNIST
N = 2000
dataset = MNIST(; split=:train)
imgs = dataset.features[:, :, 1:N]
labels_raw = dataset.targets[1:N]
# Process images into (H, W, C, BS) batches
x_data = Float32.(reshape(imgs, size(imgs, 1), size(imgs, 2), 1, size(imgs, 3)))
y_data = onehotbatch(labels_raw, 0:9)
(x_train, y_train), (x_test, y_test) = splitobs((x_data, y_data); at=train_split)
return (
# Use DataLoader to automatically minibatch and shuffle the data
DataLoader(collect.((x_train, y_train)); batchsize, shuffle=true),
# Don't shuffle the test data
DataLoader(collect.((x_test, y_test)); batchsize, shuffle=false))
end
loadmnist (generic function with 1 method)
Define the Model
lux_model = Chain(Conv((5, 5), 1 => 6, relu), MaxPool((2, 2)),
Conv((5, 5), 6 => 16, relu), MaxPool((2, 2)), FlattenLayer(3),
Chain(Dense(256 => 128, relu), Dense(128 => 84, relu), Dense(84 => 10)))
Chain(
layer_1 = Conv((5, 5), 1 => 6, relu), # 156 parameters
layer_2 = MaxPool((2, 2)),
layer_3 = Conv((5, 5), 6 => 16, relu), # 2_416 parameters
layer_4 = MaxPool((2, 2)),
layer_5 = Lux.FlattenLayer{Static.StaticInt{3}}(static(3)),
layer_6 = Chain(
layer_1 = Dense(256 => 128, relu), # 32_896 parameters
layer_2 = Dense(128 => 84, relu), # 10_836 parameters
layer_3 = Dense(84 => 10), # 850 parameters
),
) # Total: 47_154 parameters,
# plus 0 states.
We now need to convert the lux_model to SimpleChains.jl. We need to do this by defining the ToSimpleChainsAdaptor
and providing the input dimensions.
adaptor = ToSimpleChainsAdaptor((28, 28, 1))
simple_chains_model = adaptor(lux_model)
SimpleChainsLayer(
Chain(
layer_1 = Conv((5, 5), 1 => 6, relu), # 156 parameters
layer_2 = MaxPool((2, 2)),
layer_3 = Conv((5, 5), 6 => 16, relu), # 2_416 parameters
layer_4 = MaxPool((2, 2)),
layer_5 = Lux.FlattenLayer{Static.StaticInt{3}}(static(3)),
layer_6 = Chain(
layer_1 = Dense(256 => 128, relu), # 32_896 parameters
layer_2 = Dense(128 => 84, relu), # 10_836 parameters
layer_3 = Dense(84 => 10), # 850 parameters
),
),
) # Total: 47_154 parameters,
# plus 0 states.
Helper Functions
const loss = CrossEntropyLoss(; logits=Val(true))
function accuracy(model, ps, st, dataloader)
total_correct, total = 0, 0
st = Lux.testmode(st)
for (x, y) in dataloader
target_class = onecold(y)
predicted_class = onecold(Array(first(model(x, ps, st))))
total_correct += sum(target_class .== predicted_class)
total += length(target_class)
end
return total_correct / total
end
accuracy (generic function with 1 method)
Define the Training Loop
function train(model; rng=Xoshiro(0), kwargs...)
train_dataloader, test_dataloader = loadmnist(128, 0.9)
ps, st = Lux.setup(rng, model)
train_state = Training.TrainState(model, ps, st, Adam(3.0f-4))
### Warmup the model
x_proto = randn(rng, Float32, 28, 28, 1, 1)
y_proto = onehotbatch([1], 0:9)
Training.compute_gradients(AutoZygote(), loss, (x_proto, y_proto), train_state)
### Lets train the model
nepochs = 10
tr_acc, te_acc = 0.0, 0.0
for epoch in 1:nepochs
stime = time()
for (x, y) in train_dataloader
gs, _, _, train_state = Training.single_train_step!(
AutoZygote(), loss, (x, y), train_state)
end
ttime = time() - stime
tr_acc = accuracy(
model, train_state.parameters, train_state.states, train_dataloader) * 100
te_acc = accuracy(
model, train_state.parameters, train_state.states, test_dataloader) * 100
@printf "[%2d/%2d] \t Time %.2fs \t Training Accuracy: %.2f%% \t Test Accuracy: \
%.2f%%\n" epoch nepochs ttime tr_acc te_acc
end
return tr_acc, te_acc
end
train (generic function with 1 method)
Finally Training the Model
First we will train the Lux model
tr_acc, te_acc = train(lux_model)
[ 1/10] Time 94.07s Training Accuracy: 22.72% Test Accuracy: 18.50%
[ 2/10] Time 72.76s Training Accuracy: 45.28% Test Accuracy: 44.00%
[ 3/10] Time 70.07s Training Accuracy: 59.00% Test Accuracy: 60.00%
[ 4/10] Time 85.03s Training Accuracy: 68.61% Test Accuracy: 64.00%
[ 5/10] Time 83.05s Training Accuracy: 74.06% Test Accuracy: 71.50%
[ 6/10] Time 78.81s Training Accuracy: 77.67% Test Accuracy: 76.00%
[ 7/10] Time 69.71s Training Accuracy: 80.22% Test Accuracy: 77.50%
[ 8/10] Time 69.87s Training Accuracy: 82.78% Test Accuracy: 81.50%
[ 9/10] Time 70.71s Training Accuracy: 83.83% Test Accuracy: 81.00%
[10/10] Time 68.55s Training Accuracy: 85.56% Test Accuracy: 85.00%
Now we will train the SimpleChains model
train(simple_chains_model)
[ 1/10] Time 18.93s Training Accuracy: 30.00% Test Accuracy: 26.50%
[ 2/10] Time 17.84s Training Accuracy: 46.33% Test Accuracy: 42.00%
[ 3/10] Time 17.79s Training Accuracy: 61.56% Test Accuracy: 54.00%
[ 4/10] Time 17.82s Training Accuracy: 66.67% Test Accuracy: 63.00%
[ 5/10] Time 17.82s Training Accuracy: 75.00% Test Accuracy: 70.50%
[ 6/10] Time 17.84s Training Accuracy: 79.94% Test Accuracy: 73.50%
[ 7/10] Time 17.88s Training Accuracy: 81.83% Test Accuracy: 81.50%
[ 8/10] Time 17.87s Training Accuracy: 84.00% Test Accuracy: 82.00%
[ 9/10] Time 17.83s Training Accuracy: 84.94% Test Accuracy: 82.50%
[10/10] Time 17.84s Training Accuracy: 87.72% Test Accuracy: 85.00%
On my local machine we see a 3-4x speedup when using SimpleChains.jl. The conditions of the server this documentation is being built on is not ideal for CPU benchmarking hence, the speedup may not be as significant and even there might be regressions.
Appendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(MLDataDevices)
if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
println()
AMDGPU.versioninfo()
end
end
Julia Version 1.10.6
Commit 67dffc4a8ae (2024-10-28 12:23 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 48 × AMD EPYC 7402 24-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-15.0.7 (ORCJIT, znver2)
Threads: 48 default, 0 interactive, 24 GC (on 2 virtual cores)
Environment:
JULIA_CPU_THREADS = 2
JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
JULIA_PKG_SERVER =
JULIA_NUM_THREADS = 48
JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0
JULIA_DEBUG = Literate
This page was generated using Literate.jl.