Skip to content

Graph Convolutional Networks on Cora

This example is based on GCN MLX tutorial. While we are doing this manually, we recommend directly using GNNLux.jl.

julia
using Lux,
    Reactant,
    MLDatasets,
    Random,
    Statistics,
    GNNGraphs,
    ConcreteStructs,
    Printf,
    OneHotArrays,
    Optimisers

const xdev = reactant_device(; force=true)
const cdev = cpu_device()

Loading Cora Dataset

julia
function loadcora()
    data = Cora()
    gph = data.graphs[1]
    gnngraph = GNNGraph(
        gph.edge_index; ndata=gph.node_data, edata=gph.edge_data, gph.num_nodes
    )
    return (
        gph.node_data.features,
        onehotbatch(gph.node_data.targets, data.metadata["classes"]),
        # We use a dense matrix here to avoid incompatibility with Reactant
        Matrix{Int32}(adjacency_matrix(gnngraph)),
        # We use this since Reactant doesn't yet support gather adjoint
        (1:140, 141:640, 1709:2708),
    )
end

Model Definition

julia
function GCNLayer(args...; kwargs...)
    return @compact(; dense=Dense(args...; kwargs...)) do (x, adj)
        @return dense(x) * adj
    end
end

function GCN(x_dim, h_dim, out_dim; nb_layers=2, dropout=0.5, kwargs...)
    layer_sizes = vcat(x_dim, [h_dim for _ in 1:nb_layers])
    gcn_layers = [
        GCNLayer(in_dim => out_dim; kwargs...) for
        (in_dim, out_dim) in zip(layer_sizes[1:(end - 1)], layer_sizes[2:end])
    ]
    last_layer = GCNLayer(layer_sizes[end] => out_dim; kwargs...)
    dropout = Dropout(dropout)

    return @compact(; gcn_layers, dropout, last_layer) do (x, adj, mask)
        for layer in gcn_layers
            x = relu.(layer((x, adj)))
            x = dropout(x)
        end
        @return last_layer((x, adj))[:, mask]
    end
end

Helper Functions

julia
function loss_function(model, ps, st, (x, y, adj, mask))
    y_pred, st = model((x, adj, mask), ps, st)
    loss = CrossEntropyLoss(; agg=mean, logits=Val(true))(y_pred, y[:, mask])
    return loss, st, (; y_pred)
end

accuracy(y_pred, y) = mean(onecold(y_pred) .== onecold(y)) * 100

Training the Model

julia
function main(;
    hidden_dim::Int=64,
    dropout::Float64=0.1,
    nb_layers::Int=2,
    use_bias::Bool=true,
    lr::Float64=0.001,
    weight_decay::Float64=0.0,
    patience::Int=20,
    epochs::Int=200,
)
    rng = Random.default_rng()
    Random.seed!(rng, 0)

    features, targets, adj, (train_idx, val_idx, test_idx) = xdev(loadcora())

    gcn = GCN(size(features, 1), hidden_dim, size(targets, 1); nb_layers, dropout, use_bias)
    ps, st = xdev(Lux.setup(rng, gcn))
    opt = iszero(weight_decay) ? Adam(lr) : AdamW(; eta=lr, lambda=weight_decay)

    train_state = Training.TrainState(gcn, ps, st, opt)

    @printf "Total Trainable Parameters: %0.4f M\n" (Lux.parameterlength(ps) / 1.0e6)

    val_loss_compiled = Reactant.with_config(;
        dot_general_precision=PrecisionConfig.HIGH,
        convolution_precision=PrecisionConfig.HIGH,
    ) do
        @compile loss_function(gcn, ps, Lux.testmode(st), (features, targets, adj, val_idx))
    end

    train_model_compiled = Reactant.with_config(;
        dot_general_precision=PrecisionConfig.HIGH,
        convolution_precision=PrecisionConfig.HIGH,
    ) do
        @compile gcn((features, adj, train_idx), ps, Lux.testmode(st))
    end
    val_model_compiled = Reactant.with_config(;
        dot_general_precision=PrecisionConfig.HIGH,
        convolution_precision=PrecisionConfig.HIGH,
    ) do
        @compile gcn((features, adj, val_idx), ps, Lux.testmode(st))
    end

    best_loss_val = Inf
    cnt = 0

    for epoch in 1:epochs
        (_, loss, _, train_state) = Lux.Training.single_train_step!(
            AutoEnzyme(),
            loss_function,
            (features, targets, adj, train_idx),
            train_state;
            return_gradients=Val(false),
        )
        train_acc = accuracy(
            Array(
                train_model_compiled(
                    (features, adj, train_idx),
                    train_state.parameters,
                    Lux.testmode(train_state.states),
                )[1],
            ),
            Array(targets)[:, train_idx],
        )

        val_loss = first(
            val_loss_compiled(
                gcn,
                train_state.parameters,
                Lux.testmode(train_state.states),
                (features, targets, adj, val_idx),
            ),
        )
        val_acc = accuracy(
            Array(
                val_model_compiled(
                    (features, adj, val_idx),
                    train_state.parameters,
                    Lux.testmode(train_state.states),
                )[1],
            ),
            Array(targets)[:, val_idx],
        )

        @printf "Epoch %3d\tTrain Loss: %.6f\tTrain Acc: %.4f%%\tVal Loss: %.6f\t\
                 Val Acc: %.4f%%\n" epoch loss train_acc val_loss val_acc

        if val_loss < best_loss_val
            best_loss_val = val_loss
            cnt = 0
        else
            cnt += 1
            if cnt == patience
                @printf "Early Stopping at Epoch %d\n" epoch
                break
            end
        end
    end

    Reactant.with_config(;
        dot_general_precision=PrecisionConfig.HIGH,
        convolution_precision=PrecisionConfig.HIGH,
    ) do
        test_loss = @jit(
            loss_function(
                gcn,
                train_state.parameters,
                Lux.testmode(train_state.states),
                (features, targets, adj, test_idx),
            )
        )[1]
        test_acc = accuracy(
            Array(
                @jit(
                    gcn(
                        (features, adj, test_idx),
                        train_state.parameters,
                        Lux.testmode(train_state.states),
                    )
                )[1],
            ),
            Array(targets)[:, test_idx],
        )

        @printf "Test Loss: %.6f\tTest Acc: %.4f%%\n" test_loss test_acc
    end
    return nothing
end

main()
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1760386091.841336 2849446 service.cc:158] XLA service 0x17bece50 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
I0000 00:00:1760386091.841483 2849446 service.cc:166]   StreamExecutor device (0): Quadro RTX 5000, Compute Capability 7.5
I0000 00:00:1760386091.842629 2849446 se_gpu_pjrt_client.cc:1339] Using BFC allocator.
I0000 00:00:1760386091.842725 2849446 gpu_helpers.cc:136] XLA backend allocating 12526534656 bytes on device 0 for BFCAllocator.
I0000 00:00:1760386091.842819 2849446 gpu_helpers.cc:177] XLA backend will use up to 4175511552 bytes on device 0 for CollectiveBFCAllocator.
I0000 00:00:1760386091.853805 2849446 cuda_dnn.cc:463] Loaded cuDNN version 91200
┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore /var/lib/buildkite-agent/builds/gpuci-15/julialang/lux-dot-jl/lib/LuxCore/src/LuxCore.jl:18
Total Trainable Parameters: 0.0964 M
┌ Warning: `training` is set to `Val{true}()` but is not being used within an autodiff call (gradient, jacobian, etc...). This will be slow. If you are using a `Lux.jl` model, set it to inference (test) mode using `LuxCore.testmode`. Reliance on this behavior is discouraged, and is not guaranteed by Semantic Versioning, and might be removed without a deprecation cycle. It is recommended to fix this issue in your code.
└ @ LuxLib.Utils /var/lib/buildkite-agent/builds/gpuci-15/julialang/lux-dot-jl/lib/LuxLib/src/utils.jl:334
Epoch   1	Train Loss: 13.836034	Train Acc: 20.7143%	Val Loss: 7.001715	Val Acc: 26.4000%
Epoch   2	Train Loss: 8.745947	Train Acc: 25.0000%	Val Loss: 4.235206	Val Acc: 24.4000%
Epoch   3	Train Loss: 3.893347	Train Acc: 41.4286%	Val Loss: 2.219004	Val Acc: 35.2000%
Epoch   4	Train Loss: 2.026159	Train Acc: 52.8571%	Val Loss: 2.200711	Val Acc: 37.8000%
Epoch   5	Train Loss: 1.997150	Train Acc: 59.2857%	Val Loss: 2.033007	Val Acc: 43.2000%
Epoch   6	Train Loss: 1.647290	Train Acc: 68.5714%	Val Loss: 1.790704	Val Acc: 50.4000%
Epoch   7	Train Loss: 1.207621	Train Acc: 74.2857%	Val Loss: 1.608890	Val Acc: 55.4000%
Epoch   8	Train Loss: 1.194252	Train Acc: 77.1429%	Val Loss: 1.534446	Val Acc: 59.6000%
Epoch   9	Train Loss: 1.011792	Train Acc: 79.2857%	Val Loss: 1.521947	Val Acc: 60.8000%
Epoch  10	Train Loss: 1.098195	Train Acc: 75.7143%	Val Loss: 1.592601	Val Acc: 59.4000%
Epoch  11	Train Loss: 1.391503	Train Acc: 80.7143%	Val Loss: 1.580464	Val Acc: 60.8000%
Epoch  12	Train Loss: 1.397247	Train Acc: 82.8571%	Val Loss: 1.622350	Val Acc: 61.8000%
Epoch  13	Train Loss: 1.048575	Train Acc: 80.0000%	Val Loss: 1.683591	Val Acc: 61.8000%
Epoch  14	Train Loss: 0.903289	Train Acc: 79.2857%	Val Loss: 1.743905	Val Acc: 62.0000%
Epoch  15	Train Loss: 0.946101	Train Acc: 82.8571%	Val Loss: 1.792193	Val Acc: 61.2000%
Epoch  16	Train Loss: 0.895650	Train Acc: 82.1429%	Val Loss: 1.837030	Val Acc: 62.0000%
Epoch  17	Train Loss: 1.044762	Train Acc: 83.5714%	Val Loss: 1.843937	Val Acc: 62.6000%
Epoch  18	Train Loss: 0.993514	Train Acc: 83.5714%	Val Loss: 1.811226	Val Acc: 63.2000%
Epoch  19	Train Loss: 0.756631	Train Acc: 85.0000%	Val Loss: 1.768390	Val Acc: 64.0000%
Epoch  20	Train Loss: 0.781535	Train Acc: 85.0000%	Val Loss: 1.713567	Val Acc: 65.4000%
Epoch  21	Train Loss: 0.572586	Train Acc: 86.4286%	Val Loss: 1.671879	Val Acc: 66.4000%
Epoch  22	Train Loss: 0.701187	Train Acc: 87.1429%	Val Loss: 1.630667	Val Acc: 67.0000%
Epoch  23	Train Loss: 0.525414	Train Acc: 88.5714%	Val Loss: 1.599651	Val Acc: 67.4000%
Epoch  24	Train Loss: 0.714332	Train Acc: 87.8571%	Val Loss: 1.588971	Val Acc: 67.0000%
Epoch  25	Train Loss: 0.615730	Train Acc: 87.1429%	Val Loss: 1.580288	Val Acc: 67.6000%
Epoch  26	Train Loss: 0.506644	Train Acc: 87.1429%	Val Loss: 1.576501	Val Acc: 67.4000%
Epoch  27	Train Loss: 0.527762	Train Acc: 87.1429%	Val Loss: 1.574614	Val Acc: 67.0000%
Epoch  28	Train Loss: 0.713766	Train Acc: 87.8571%	Val Loss: 1.592753	Val Acc: 68.2000%
Epoch  29	Train Loss: 0.521682	Train Acc: 90.0000%	Val Loss: 1.606794	Val Acc: 68.2000%
Early Stopping at Epoch 29
Test Loss: 1.512579	Test Acc: 68.8000%

Appendix

julia
using InteractiveUtils
InteractiveUtils.versioninfo()

if @isdefined(MLDataDevices)
    if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
        println()
        CUDA.versioninfo()
    end

    if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
        println()
        AMDGPU.versioninfo()
    end
end
Julia Version 1.11.7
Commit f2b3dbda30a (2025-09-08 12:10 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 48 × AMD EPYC 7402 24-Core Processor
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver2)
Threads: 48 default, 0 interactive, 24 GC (on 2 virtual cores)
Environment:
  JULIA_CPU_THREADS = 2
  JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
  LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
  JULIA_PKG_SERVER = 
  JULIA_NUM_THREADS = 48
  JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
  JULIA_PKG_PRECOMPILE_AUTO = 0
  JULIA_DEBUG = Literate

This page was generated using Literate.jl.