Training a Simple LSTM
In this tutorial we will go over using a recurrent neural network to classify clockwise and anticlockwise spirals. By the end of this tutorial you will be able to:
Create custom Lux models.
Become familiar with the Lux recurrent neural network API.
Training using Optimisers.jl and Zygote.jl.
Package Imports
Note: If you wish to use AutoZygote() for automatic differentiation, add Zygote to your project dependencies and include using Zygote.
using ADTypes, Lux, JLD2, MLUtils, Optimisers, Printf, Reactant, RandomDataset
We will use MLUtils to generate 500 (noisy) clockwise and 500 (noisy) anticlockwise spirals. Using this data we will create a MLUtils.DataLoader. Our dataloader will give us sequences of size 2 × seq_len × batch_size and we need to predict a binary value whether the sequence is clockwise or anticlockwise.
function create_dataset(; dataset_size=1000, sequence_length=50)
# Create the spirals
data = [MLUtils.Datasets.make_spiral(sequence_length) for _ in 1:dataset_size]
# Get the labels
labels = vcat(repeat([0.0f0], dataset_size ÷ 2), repeat([1.0f0], dataset_size ÷ 2))
clockwise_spirals = [
reshape(d[1][:, 1:sequence_length], :, sequence_length, 1) for
d in data[1:(dataset_size ÷ 2)]
]
anticlockwise_spirals = [
reshape(d[1][:, (sequence_length + 1):end], :, sequence_length, 1) for
d in data[((dataset_size ÷ 2) + 1):end]
]
x_data = Float32.(cat(clockwise_spirals..., anticlockwise_spirals...; dims=3))
return x_data, labels
end
function get_dataloaders(; dataset_size=1000, sequence_length=50)
x_data, labels = create_dataset(; dataset_size, sequence_length)
# Split the dataset
(x_train, y_train), (x_val, y_val) = splitobs((x_data, labels); at=0.8, shuffle=true)
# Create DataLoaders
return (
# Use DataLoader to automatically minibatch and shuffle the data
DataLoader(
collect.((x_train, y_train)); batchsize=128, shuffle=true, partial=false
),
# Don't shuffle the validation data
DataLoader(collect.((x_val, y_val)); batchsize=128, shuffle=false, partial=false),
)
endCreating a Classifier
We will be extending the Lux.AbstractLuxContainerLayer type for our custom model since it will contain a LSTM block and a classifier head.
We pass the field names lstm_cell and classifier to the type to ensure that the parameters and states are automatically populated and we don't have to define Lux.initialparameters and Lux.initialstates.
To understand more about container layers, please look at Container Layer.
struct SpiralClassifier{L,C} <: AbstractLuxContainerLayer{(:lstm_cell, :classifier)}
lstm_cell::L
classifier::C
endWe won't define the model from scratch but rather use the Lux.LSTMCell and Lux.Dense.
function SpiralClassifier(in_dims, hidden_dims, out_dims)
return SpiralClassifier(
LSTMCell(in_dims => hidden_dims), Dense(hidden_dims => out_dims, sigmoid)
)
endWe can use default Lux blocks – Recurrence(LSTMCell(in_dims => hidden_dims) – instead of defining the following. But let's still do it for the sake of it.
Now we need to define the behavior of the Classifier when it is invoked.
function (s::SpiralClassifier)(
x::AbstractArray{T,3}, ps::NamedTuple, st::NamedTuple
) where {T}
# First we will have to run the sequence through the LSTM Cell
# The first call to LSTM Cell will create the initial hidden state
# See that the parameters and states are automatically populated into a field called
# `lstm_cell` We use `eachslice` to get the elements in the sequence without copying,
# and `Iterators.peel` to split out the first element for LSTM initialization.
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
(y, carry), st_lstm = s.lstm_cell(x_init, ps.lstm_cell, st.lstm_cell)
# Now that we have the hidden state and memory in `carry` we will pass the input and
# `carry` jointly
for x in x_rest
(y, carry), st_lstm = s.lstm_cell((x, carry), ps.lstm_cell, st_lstm)
end
# After running through the sequence we will pass the output through the classifier
y, st_classifier = s.classifier(y, ps.classifier, st.classifier)
# Finally remember to create the updated state
st = merge(st, (classifier=st_classifier, lstm_cell=st_lstm))
return vec(y), st
endUsing the @compact API
We can also define the model using the Lux.@compact API, which is a more concise way of defining models. This macro automatically handles the boilerplate code for you and as such we recommend this way of defining custom layers
function SpiralClassifierCompact(in_dims, hidden_dims, out_dims)
lstm_cell = LSTMCell(in_dims => hidden_dims)
classifier = Dense(hidden_dims => out_dims, sigmoid)
return @compact(; lstm_cell, classifier) do x::AbstractArray{T,3} where {T}
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
y, carry = lstm_cell(x_init)
for x in x_rest
y, carry = lstm_cell((x, carry))
end
@return vec(classifier(y))
end
endDefining Accuracy, Loss and Optimiser
Now let's define the binary cross-entropy loss. Typically it is recommended to use logitbinarycrossentropy since it is more numerically stable, but for the sake of simplicity we will use binarycrossentropy.
const lossfn = BinaryCrossEntropyLoss()
function compute_loss(model, ps, st, (x, y))
ŷ, st_ = model(x, ps, st)
loss = lossfn(ŷ, y)
return loss, st_, (; y_pred=ŷ)
end
matches(y_pred, y_true) = sum((y_pred .> 0.5f0) .== y_true)
accuracy(y_pred, y_true) = matches(y_pred, y_true) / length(y_pred)Training the Model
function main(model_type)
dev = reactant_device()
cdev = cpu_device()
# Get the dataloaders
train_loader, val_loader = get_dataloaders() |> dev
# Create the model
model = model_type(2, 8, 1)
ps, st = Lux.setup(Random.default_rng(), model) |> dev
train_state = Training.TrainState(model, ps, st, Adam(0.01f0))
model_compiled = if dev isa ReactantDevice
@compile model(first(train_loader)[1], ps, Lux.testmode(st))
else
model
end
ad = dev isa ReactantDevice ? AutoEnzyme() : AutoZygote()
for epoch in 1:25
# Train the model
total_loss = 0.0f0
total_samples = 0
for (x, y) in train_loader
(_, loss, _, train_state) = Training.single_train_step!(
ad, lossfn, (x, y), train_state
)
total_loss += loss * length(y)
total_samples += length(y)
end
@printf("Epoch [%3d]: Loss %4.5f\n", epoch, total_loss / total_samples)
# Validate the model
total_acc = 0.0f0
total_loss = 0.0f0
total_samples = 0
st_ = Lux.testmode(train_state.states)
for (x, y) in val_loader
ŷ, st_ = model_compiled(x, train_state.parameters, st_)
ŷ, y = cdev(ŷ), cdev(y)
total_acc += accuracy(ŷ, y) * length(y)
total_loss += lossfn(ŷ, y) * length(y)
total_samples += length(y)
end
@printf(
"Validation:\tLoss %4.5f\tAccuracy %4.5f\n",
total_loss / total_samples,
total_acc / total_samples
)
end
return (train_state.parameters, train_state.states) |> cdev
end
ps_trained, st_trained = main(SpiralClassifier)┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore ~/work/Lux.jl/Lux.jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [ 1]: Loss 0.57961
Validation: Loss 0.47402 Accuracy 0.89062
Epoch [ 2]: Loss 0.44470
Validation: Loss 0.39015 Accuracy 1.00000
Epoch [ 3]: Loss 0.36560
Validation: Loss 0.32219 Accuracy 1.00000
Epoch [ 4]: Loss 0.30164
Validation: Loss 0.26073 Accuracy 1.00000
Epoch [ 5]: Loss 0.24237
Validation: Loss 0.20406 Accuracy 1.00000
Epoch [ 6]: Loss 0.18766
Validation: Loss 0.15460 Accuracy 1.00000
Epoch [ 7]: Loss 0.13929
Validation: Loss 0.11342 Accuracy 1.00000
Epoch [ 8]: Loss 0.10249
Validation: Loss 0.08443 Accuracy 1.00000
Epoch [ 9]: Loss 0.07695
Validation: Loss 0.06492 Accuracy 1.00000
Epoch [ 10]: Loss 0.05973
Validation: Loss 0.05031 Accuracy 1.00000
Epoch [ 11]: Loss 0.04569
Validation: Loss 0.03730 Accuracy 1.00000
Epoch [ 12]: Loss 0.03268
Validation: Loss 0.02593 Accuracy 1.00000
Epoch [ 13]: Loss 0.02314
Validation: Loss 0.01933 Accuracy 1.00000
Epoch [ 14]: Loss 0.01756
Validation: Loss 0.01479 Accuracy 1.00000
Epoch [ 15]: Loss 0.01350
Validation: Loss 0.01187 Accuracy 1.00000
Epoch [ 16]: Loss 0.01111
Validation: Loss 0.01004 Accuracy 1.00000
Epoch [ 17]: Loss 0.00949
Validation: Loss 0.00878 Accuracy 1.00000
Epoch [ 18]: Loss 0.00841
Validation: Loss 0.00793 Accuracy 1.00000
Epoch [ 19]: Loss 0.00766
Validation: Loss 0.00729 Accuracy 1.00000
Epoch [ 20]: Loss 0.00707
Validation: Loss 0.00676 Accuracy 1.00000
Epoch [ 21]: Loss 0.00658
Validation: Loss 0.00632 Accuracy 1.00000
Epoch [ 22]: Loss 0.00616
Validation: Loss 0.00593 Accuracy 1.00000
Epoch [ 23]: Loss 0.00579
Validation: Loss 0.00559 Accuracy 1.00000
Epoch [ 24]: Loss 0.00547
Validation: Loss 0.00528 Accuracy 1.00000
Epoch [ 25]: Loss 0.00517
Validation: Loss 0.00500 Accuracy 1.00000We can also train the compact model with the exact same code!
ps_trained2, st_trained2 = main(SpiralClassifierCompact)┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore ~/work/Lux.jl/Lux.jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [ 1]: Loss 0.71066
Validation: Loss 0.67123 Accuracy 0.53125
Epoch [ 2]: Loss 0.65536
Validation: Loss 0.60271 Accuracy 0.53125
Epoch [ 3]: Loss 0.57324
Validation: Loss 0.49963 Accuracy 1.00000
Epoch [ 4]: Loss 0.46617
Validation: Loss 0.38726 Accuracy 1.00000
Epoch [ 5]: Loss 0.36129
Validation: Loss 0.29529 Accuracy 1.00000
Epoch [ 6]: Loss 0.27896
Validation: Loss 0.22857 Accuracy 1.00000
Epoch [ 7]: Loss 0.21753
Validation: Loss 0.17092 Accuracy 1.00000
Epoch [ 8]: Loss 0.15732
Validation: Loss 0.11990 Accuracy 1.00000
Epoch [ 9]: Loss 0.10764
Validation: Loss 0.08035 Accuracy 1.00000
Epoch [ 10]: Loss 0.06991
Validation: Loss 0.05142 Accuracy 1.00000
Epoch [ 11]: Loss 0.04545
Validation: Loss 0.03547 Accuracy 1.00000
Epoch [ 12]: Loss 0.03270
Validation: Loss 0.02705 Accuracy 1.00000
Epoch [ 13]: Loss 0.02551
Validation: Loss 0.02185 Accuracy 1.00000
Epoch [ 14]: Loss 0.02070
Validation: Loss 0.01817 Accuracy 1.00000
Epoch [ 15]: Loss 0.01734
Validation: Loss 0.01539 Accuracy 1.00000
Epoch [ 16]: Loss 0.01476
Validation: Loss 0.01331 Accuracy 1.00000
Epoch [ 17]: Loss 0.01284
Validation: Loss 0.01166 Accuracy 1.00000
Epoch [ 18]: Loss 0.01129
Validation: Loss 0.01038 Accuracy 1.00000
Epoch [ 19]: Loss 0.01010
Validation: Loss 0.00935 Accuracy 1.00000
Epoch [ 20]: Loss 0.00910
Validation: Loss 0.00851 Accuracy 1.00000
Epoch [ 21]: Loss 0.00828
Validation: Loss 0.00779 Accuracy 1.00000
Epoch [ 22]: Loss 0.00761
Validation: Loss 0.00718 Accuracy 1.00000
Epoch [ 23]: Loss 0.00703
Validation: Loss 0.00664 Accuracy 1.00000
Epoch [ 24]: Loss 0.00650
Validation: Loss 0.00617 Accuracy 1.00000
Epoch [ 25]: Loss 0.00604
Validation: Loss 0.00575 Accuracy 1.00000Saving the Model
We can save the model using JLD2 (and any other serialization library of your choice) Note that we transfer the model to CPU before saving. Additionally, we recommend that you don't save the model struct and only save the parameters and states.
@save "trained_model.jld2" ps_trained st_trainedLet's try loading the model
@load "trained_model.jld2" ps_trained st_trained2-element Vector{Symbol}:
:ps_trained
:st_trainedAppendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(MLDataDevices)
if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
println()
AMDGPU.versioninfo()
end
endJulia Version 1.11.8
Commit cf1da5e20e3 (2025-11-06 17:49 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 4 × AMD EPYC 7763 64-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 4 default, 0 interactive, 2 GC (on 4 virtual cores)
Environment:
JULIA_DEBUG = Literate
LD_LIBRARY_PATH =
JULIA_NUM_THREADS = 4
JULIA_CPU_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0This page was generated using Literate.jl.