Skip to content

Training a Simple LSTM

In this tutorial we will go over using a recurrent neural network to classify clockwise and anticlockwise spirals. By the end of this tutorial you will be able to:

  1. Create custom Lux models.

  2. Become familiar with the Lux recurrent neural network API.

  3. Training using Optimisers.jl and Zygote.jl.

Package Imports

Note: If you wish to use AutoZygote() for automatic differentiation, add Zygote to your project dependencies and include using Zygote.

julia
using ADTypes, Lux, JLD2, MLUtils, Optimisers, Printf, Reactant, Random
Precompiling packages...
   1345.5 ms  ✓ StructUtilsTablesExt (serial)
  1 dependency successfully precompiled in 1 seconds

Dataset

We will use MLUtils to generate 500 (noisy) clockwise and 500 (noisy) anticlockwise spirals. Using this data we will create a MLUtils.DataLoader. Our dataloader will give us sequences of size 2 × seq_len × batch_size and we need to predict a binary value whether the sequence is clockwise or anticlockwise.

julia
function create_dataset(; dataset_size=1000, sequence_length=50)
    # Create the spirals
    data = [MLUtils.Datasets.make_spiral(sequence_length) for _ in 1:dataset_size]
    # Get the labels
    labels = vcat(repeat([0.0f0], dataset_size ÷ 2), repeat([1.0f0], dataset_size ÷ 2))
    clockwise_spirals = [
        reshape(d[1][:, 1:sequence_length], :, sequence_length, 1) for
        d in data[1:(dataset_size ÷ 2)]
    ]
    anticlockwise_spirals = [
        reshape(d[1][:, (sequence_length + 1):end], :, sequence_length, 1) for
        d in data[((dataset_size ÷ 2) + 1):end]
    ]
    x_data = Float32.(cat(clockwise_spirals..., anticlockwise_spirals...; dims=3))
    return x_data, labels
end

function get_dataloaders(; dataset_size=1000, sequence_length=50)
    x_data, labels = create_dataset(; dataset_size, sequence_length)
    # Split the dataset
    (x_train, y_train), (x_val, y_val) = splitobs((x_data, labels); at=0.8, shuffle=true)
    # Create DataLoaders
    return (
        # Use DataLoader to automatically minibatch and shuffle the data
        DataLoader(
            collect.((x_train, y_train)); batchsize=128, shuffle=true, partial=false
        ),
        # Don't shuffle the validation data
        DataLoader(collect.((x_val, y_val)); batchsize=128, shuffle=false, partial=false),
    )
end

Creating a Classifier

We will be extending the Lux.AbstractLuxContainerLayer type for our custom model since it will contain a LSTM block and a classifier head.

We pass the field names lstm_cell and classifier to the type to ensure that the parameters and states are automatically populated and we don't have to define Lux.initialparameters and Lux.initialstates.

To understand more about container layers, please look at Container Layer.

julia
struct SpiralClassifier{L,C} <: AbstractLuxContainerLayer{(:lstm_cell, :classifier)}
    lstm_cell::L
    classifier::C
end

We won't define the model from scratch but rather use the Lux.LSTMCell and Lux.Dense.

julia
function SpiralClassifier(in_dims, hidden_dims, out_dims)
    return SpiralClassifier(
        LSTMCell(in_dims => hidden_dims), Dense(hidden_dims => out_dims, sigmoid)
    )
end

We can use default Lux blocks – Recurrence(LSTMCell(in_dims => hidden_dims) – instead of defining the following. But let's still do it for the sake of it.

Now we need to define the behavior of the Classifier when it is invoked.

julia
function (s::SpiralClassifier)(
    x::AbstractArray{T,3}, ps::NamedTuple, st::NamedTuple
) where {T}
    # First we will have to run the sequence through the LSTM Cell
    # The first call to LSTM Cell will create the initial hidden state
    # See that the parameters and states are automatically populated into a field called
    # `lstm_cell` We use `eachslice` to get the elements in the sequence without copying,
    # and `Iterators.peel` to split out the first element for LSTM initialization.
    x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
    (y, carry), st_lstm = s.lstm_cell(x_init, ps.lstm_cell, st.lstm_cell)
    # Now that we have the hidden state and memory in `carry` we will pass the input and
    # `carry` jointly
    for x in x_rest
        (y, carry), st_lstm = s.lstm_cell((x, carry), ps.lstm_cell, st_lstm)
    end
    # After running through the sequence we will pass the output through the classifier
    y, st_classifier = s.classifier(y, ps.classifier, st.classifier)
    # Finally remember to create the updated state
    st = merge(st, (classifier=st_classifier, lstm_cell=st_lstm))
    return vec(y), st
end

Using the @compact API

We can also define the model using the Lux.@compact API, which is a more concise way of defining models. This macro automatically handles the boilerplate code for you and as such we recommend this way of defining custom layers

julia
function SpiralClassifierCompact(in_dims, hidden_dims, out_dims)
    return @compact(;
        lstm_cell=LSTMCell(in_dims => hidden_dims),
        classifier=Dense(hidden_dims => out_dims, sigmoid)
    ) do x::AbstractArray{T,3} where {T}
        x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
        y, carry = lstm_cell(x_init)
        for x in x_rest
            y, carry = lstm_cell((x, carry))
        end
        @return vec(classifier(y))
    end
end

Defining Accuracy, Loss and Optimiser

Now let's define the binary cross-entropy loss. Typically it is recommended to use logitbinarycrossentropy since it is more numerically stable, but for the sake of simplicity we will use binarycrossentropy.

julia
const lossfn = BinaryCrossEntropyLoss()

function compute_loss(model, ps, st, (x, y))
    ŷ, st_ = model(x, ps, st)
    loss = lossfn(ŷ, y)
    return loss, st_, (; y_pred=ŷ)
end

matches(y_pred, y_true) = sum((y_pred .> 0.5f0) .== y_true)
accuracy(y_pred, y_true) = matches(y_pred, y_true) / length(y_pred)

Training the Model

julia
function main(model_type)
    dev = reactant_device()
    cdev = cpu_device()

    # Get the dataloaders
    train_loader, val_loader = get_dataloaders() |> dev

    # Create the model
    model = model_type(2, 8, 1)
    ps, st = Lux.setup(Random.default_rng(), model) |> dev

    train_state = Training.TrainState(model, ps, st, Adam(0.01f0))
    model_compiled = if dev isa ReactantDevice
        @compile model(first(train_loader)[1], ps, Lux.testmode(st))
    else
        model
    end
    ad = dev isa ReactantDevice ? AutoReactant() : AutoZygote()

    for epoch in 1:25
        # Train the model
        total_loss = 0.0f0
        total_samples = 0
        for (x, y) in train_loader
            (_, loss, _, train_state) = Training.single_train_step!(
                ad, lossfn, (x, y), train_state
            )
            total_loss += loss * length(y)
            total_samples += length(y)
        end
        @printf("Epoch [%3d]: Loss %4.5f\n", epoch, total_loss / total_samples)

        # Validate the model
        total_acc = 0.0f0
        total_loss = 0.0f0
        total_samples = 0

        st_ = Lux.testmode(train_state.states)
        for (x, y) in val_loader
            ŷ, st_ = model_compiled(x, train_state.parameters, st_)
            ŷ, y = cdev(ŷ), cdev(y)
            total_acc += accuracy(ŷ, y) * length(y)
            total_loss += lossfn(ŷ, y) * length(y)
            total_samples += length(y)
        end

        @printf(
            "Validation:\tLoss %4.5f\tAccuracy %4.5f\n",
            total_loss / total_samples,
            total_acc / total_samples
        )
    end

    return (train_state.parameters, train_state.states) |> cdev
end

ps_trained, st_trained = main(SpiralClassifier)
┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore ~/work/Lux.jl/Lux.jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [  1]: Loss 0.68599
Validation:	Loss 0.58342	Accuracy 0.55469
Epoch [  2]: Loss 0.57508
Validation:	Loss 0.49996	Accuracy 0.55469
Epoch [  3]: Loss 0.50874
Validation:	Loss 0.43521	Accuracy 0.55469
Epoch [  4]: Loss 0.45077
Validation:	Loss 0.38453	Accuracy 0.55469
Epoch [  5]: Loss 0.41055
Validation:	Loss 0.34899	Accuracy 1.00000
Epoch [  6]: Loss 0.37674
Validation:	Loss 0.32021	Accuracy 1.00000
Epoch [  7]: Loss 0.35042
Validation:	Loss 0.29558	Accuracy 1.00000
Epoch [  8]: Loss 0.33002
Validation:	Loss 0.27405	Accuracy 1.00000
Epoch [  9]: Loss 0.30177
Validation:	Loss 0.25456	Accuracy 1.00000
Epoch [ 10]: Loss 0.28077
Validation:	Loss 0.23612	Accuracy 1.00000
Epoch [ 11]: Loss 0.26258
Validation:	Loss 0.21712	Accuracy 1.00000
Epoch [ 12]: Loss 0.24173
Validation:	Loss 0.19692	Accuracy 1.00000
Epoch [ 13]: Loss 0.21370
Validation:	Loss 0.17564	Accuracy 1.00000
Epoch [ 14]: Loss 0.19330
Validation:	Loss 0.15397	Accuracy 1.00000
Epoch [ 15]: Loss 0.16656
Validation:	Loss 0.13295	Accuracy 1.00000
Epoch [ 16]: Loss 0.14328
Validation:	Loss 0.11352	Accuracy 1.00000
Epoch [ 17]: Loss 0.12245
Validation:	Loss 0.09768	Accuracy 1.00000
Epoch [ 18]: Loss 0.10697
Validation:	Loss 0.08615	Accuracy 1.00000
Epoch [ 19]: Loss 0.09416
Validation:	Loss 0.07718	Accuracy 1.00000
Epoch [ 20]: Loss 0.08507
Validation:	Loss 0.06974	Accuracy 1.00000
Epoch [ 21]: Loss 0.07723
Validation:	Loss 0.06339	Accuracy 1.00000
Epoch [ 22]: Loss 0.07023
Validation:	Loss 0.05801	Accuracy 1.00000
Epoch [ 23]: Loss 0.06492
Validation:	Loss 0.05339	Accuracy 1.00000
Epoch [ 24]: Loss 0.05839
Validation:	Loss 0.04937	Accuracy 1.00000
Epoch [ 25]: Loss 0.05476
Validation:	Loss 0.04585	Accuracy 1.00000

We can also train the compact model with the exact same code!

julia
ps_trained2, st_trained2 = main(SpiralClassifierCompact)
┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore ~/work/Lux.jl/Lux.jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [  1]: Loss 0.52339
Validation:	Loss 0.48854	Accuracy 0.47656
Epoch [  2]: Loss 0.44705
Validation:	Loss 0.42471	Accuracy 0.47656
Epoch [  3]: Loss 0.38569
Validation:	Loss 0.35689	Accuracy 1.00000
Epoch [  4]: Loss 0.31658
Validation:	Loss 0.27728	Accuracy 1.00000
Epoch [  5]: Loss 0.24347
Validation:	Loss 0.21313	Accuracy 1.00000
Epoch [  6]: Loss 0.18686
Validation:	Loss 0.16538	Accuracy 1.00000
Epoch [  7]: Loss 0.14628
Validation:	Loss 0.12779	Accuracy 1.00000
Epoch [  8]: Loss 0.11143
Validation:	Loss 0.09873	Accuracy 1.00000
Epoch [  9]: Loss 0.08620
Validation:	Loss 0.07722	Accuracy 1.00000
Epoch [ 10]: Loss 0.06978
Validation:	Loss 0.06311	Accuracy 1.00000
Epoch [ 11]: Loss 0.05722
Validation:	Loss 0.05245	Accuracy 1.00000
Epoch [ 12]: Loss 0.04724
Validation:	Loss 0.04279	Accuracy 1.00000
Epoch [ 13]: Loss 0.03655
Validation:	Loss 0.02856	Accuracy 1.00000
Epoch [ 14]: Loss 0.02147
Validation:	Loss 0.01430	Accuracy 1.00000
Epoch [ 15]: Loss 0.01187
Validation:	Loss 0.00963	Accuracy 1.00000
Epoch [ 16]: Loss 0.00887
Validation:	Loss 0.00802	Accuracy 1.00000
Epoch [ 17]: Loss 0.00764
Validation:	Loss 0.00716	Accuracy 1.00000
Epoch [ 18]: Loss 0.00692
Validation:	Loss 0.00657	Accuracy 1.00000
Epoch [ 19]: Loss 0.00639
Validation:	Loss 0.00611	Accuracy 1.00000
Epoch [ 20]: Loss 0.00595
Validation:	Loss 0.00572	Accuracy 1.00000
Epoch [ 21]: Loss 0.00557
Validation:	Loss 0.00537	Accuracy 1.00000
Epoch [ 22]: Loss 0.00525
Validation:	Loss 0.00507	Accuracy 1.00000
Epoch [ 23]: Loss 0.00496
Validation:	Loss 0.00480	Accuracy 1.00000
Epoch [ 24]: Loss 0.00470
Validation:	Loss 0.00456	Accuracy 1.00000
Epoch [ 25]: Loss 0.00447
Validation:	Loss 0.00434	Accuracy 1.00000

Saving the Model

We can save the model using JLD2 (and any other serialization library of your choice) Note that we transfer the model to CPU before saving. Additionally, we recommend that you don't save the model struct and only save the parameters and states.

julia
@save "trained_model.jld2" ps_trained st_trained

Let's try loading the model

julia
@load "trained_model.jld2" ps_trained st_trained
2-element Vector{Symbol}:
 :ps_trained
 :st_trained

Appendix

julia
using InteractiveUtils
InteractiveUtils.versioninfo()

if @isdefined(MLDataDevices)
    if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
        println()
        CUDA.versioninfo()
    end

    if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
        println()
        AMDGPU.versioninfo()
    end
end
Julia Version 1.12.4
Commit 01a2eadb047 (2026-01-06 16:56 UTC)
Build Info:
  Official https://julialang.org release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 4 × AMD EPYC 7763 64-Core Processor
  WORD_SIZE: 64
  LLVM: libLLVM-18.1.7 (ORCJIT, znver3)
  GC: Built with stock GC
Threads: 4 default, 1 interactive, 4 GC (on 4 virtual cores)
Environment:
  JULIA_DEBUG = Literate
  LD_LIBRARY_PATH = 
  JULIA_NUM_THREADS = 4
  JULIA_CPU_HARD_MEMORY_LIMIT = 100%
  JULIA_PKG_PRECOMPILE_AUTO = 0

This page was generated using Literate.jl.