Training a Simple LSTM
In this tutorial we will go over using a recurrent neural network to classify clockwise and anticlockwise spirals. By the end of this tutorial you will be able to:
Create custom Lux models.
Become familiar with the Lux recurrent neural network API.
Training using Optimisers.jl and Zygote.jl.
Package Imports
Note: If you wish to use AutoZygote() for automatic differentiation, add Zygote to your project dependencies and include using Zygote.
using ADTypes, Lux, JLD2, MLUtils, Optimisers, Printf, Reactant, RandomDataset
We will use MLUtils to generate 500 (noisy) clockwise and 500 (noisy) anticlockwise spirals. Using this data we will create a MLUtils.DataLoader. Our dataloader will give us sequences of size 2 × seq_len × batch_size and we need to predict a binary value whether the sequence is clockwise or anticlockwise.
function create_dataset(; dataset_size=1000, sequence_length=50)
# Create the spirals
data = [MLUtils.Datasets.make_spiral(sequence_length) for _ in 1:dataset_size]
# Get the labels
labels = vcat(repeat([0.0f0], dataset_size ÷ 2), repeat([1.0f0], dataset_size ÷ 2))
clockwise_spirals = [
reshape(d[1][:, 1:sequence_length], :, sequence_length, 1) for
d in data[1:(dataset_size ÷ 2)]
]
anticlockwise_spirals = [
reshape(d[1][:, (sequence_length + 1):end], :, sequence_length, 1) for
d in data[((dataset_size ÷ 2) + 1):end]
]
x_data = Float32.(cat(clockwise_spirals..., anticlockwise_spirals...; dims=3))
return x_data, labels
end
function get_dataloaders(; dataset_size=1000, sequence_length=50)
x_data, labels = create_dataset(; dataset_size, sequence_length)
# Split the dataset
(x_train, y_train), (x_val, y_val) = splitobs((x_data, labels); at=0.8, shuffle=true)
# Create DataLoaders
return (
# Use DataLoader to automatically minibatch and shuffle the data
DataLoader(
collect.((x_train, y_train)); batchsize=128, shuffle=true, partial=false
),
# Don't shuffle the validation data
DataLoader(collect.((x_val, y_val)); batchsize=128, shuffle=false, partial=false),
)
endCreating a Classifier
We will be extending the Lux.AbstractLuxContainerLayer type for our custom model since it will contain a LSTM block and a classifier head.
We pass the field names lstm_cell and classifier to the type to ensure that the parameters and states are automatically populated and we don't have to define Lux.initialparameters and Lux.initialstates.
To understand more about container layers, please look at Container Layer.
struct SpiralClassifier{L,C} <: AbstractLuxContainerLayer{(:lstm_cell, :classifier)}
lstm_cell::L
classifier::C
endWe won't define the model from scratch but rather use the Lux.LSTMCell and Lux.Dense.
function SpiralClassifier(in_dims, hidden_dims, out_dims)
return SpiralClassifier(
LSTMCell(in_dims => hidden_dims), Dense(hidden_dims => out_dims, sigmoid)
)
endWe can use default Lux blocks – Recurrence(LSTMCell(in_dims => hidden_dims) – instead of defining the following. But let's still do it for the sake of it.
Now we need to define the behavior of the Classifier when it is invoked.
function (s::SpiralClassifier)(
x::AbstractArray{T,3}, ps::NamedTuple, st::NamedTuple
) where {T}
# First we will have to run the sequence through the LSTM Cell
# The first call to LSTM Cell will create the initial hidden state
# See that the parameters and states are automatically populated into a field called
# `lstm_cell` We use `eachslice` to get the elements in the sequence without copying,
# and `Iterators.peel` to split out the first element for LSTM initialization.
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
(y, carry), st_lstm = s.lstm_cell(x_init, ps.lstm_cell, st.lstm_cell)
# Now that we have the hidden state and memory in `carry` we will pass the input and
# `carry` jointly
for x in x_rest
(y, carry), st_lstm = s.lstm_cell((x, carry), ps.lstm_cell, st_lstm)
end
# After running through the sequence we will pass the output through the classifier
y, st_classifier = s.classifier(y, ps.classifier, st.classifier)
# Finally remember to create the updated state
st = merge(st, (classifier=st_classifier, lstm_cell=st_lstm))
return vec(y), st
endUsing the @compact API
We can also define the model using the Lux.@compact API, which is a more concise way of defining models. This macro automatically handles the boilerplate code for you and as such we recommend this way of defining custom layers
function SpiralClassifierCompact(in_dims, hidden_dims, out_dims)
lstm_cell = LSTMCell(in_dims => hidden_dims)
classifier = Dense(hidden_dims => out_dims, sigmoid)
return @compact(; lstm_cell, classifier) do x::AbstractArray{T,3} where {T}
x_init, x_rest = Iterators.peel(LuxOps.eachslice(x, Val(2)))
y, carry = lstm_cell(x_init)
for x in x_rest
y, carry = lstm_cell((x, carry))
end
@return vec(classifier(y))
end
endDefining Accuracy, Loss and Optimiser
Now let's define the binary cross-entropy loss. Typically it is recommended to use logitbinarycrossentropy since it is more numerically stable, but for the sake of simplicity we will use binarycrossentropy.
const lossfn = BinaryCrossEntropyLoss()
function compute_loss(model, ps, st, (x, y))
ŷ, st_ = model(x, ps, st)
loss = lossfn(ŷ, y)
return loss, st_, (; y_pred=ŷ)
end
matches(y_pred, y_true) = sum((y_pred .> 0.5f0) .== y_true)
accuracy(y_pred, y_true) = matches(y_pred, y_true) / length(y_pred)Training the Model
function main(model_type)
dev = reactant_device()
cdev = cpu_device()
# Get the dataloaders
train_loader, val_loader = get_dataloaders() |> dev
# Create the model
model = model_type(2, 8, 1)
ps, st = Lux.setup(Random.default_rng(), model) |> dev
train_state = Training.TrainState(model, ps, st, Adam(0.01f0))
model_compiled = if dev isa ReactantDevice
@compile model(first(train_loader)[1], ps, Lux.testmode(st))
else
model
end
ad = dev isa ReactantDevice ? AutoEnzyme() : AutoZygote()
for epoch in 1:25
# Train the model
total_loss = 0.0f0
total_samples = 0
for (x, y) in train_loader
(_, loss, _, train_state) = Training.single_train_step!(
ad, lossfn, (x, y), train_state
)
total_loss += loss * length(y)
total_samples += length(y)
end
@printf("Epoch [%3d]: Loss %4.5f\n", epoch, total_loss / total_samples)
# Validate the model
total_acc = 0.0f0
total_loss = 0.0f0
total_samples = 0
st_ = Lux.testmode(train_state.states)
for (x, y) in val_loader
ŷ, st_ = model_compiled(x, train_state.parameters, st_)
ŷ, y = cdev(ŷ), cdev(y)
total_acc += accuracy(ŷ, y) * length(y)
total_loss += lossfn(ŷ, y) * length(y)
total_samples += length(y)
end
@printf(
"Validation:\tLoss %4.5f\tAccuracy %4.5f\n",
total_loss / total_samples,
total_acc / total_samples
)
end
return (train_state.parameters, train_state.states) |> cdev
end
ps_trained, st_trained = main(SpiralClassifier)┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore ~/work/Lux.jl/Lux.jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [ 1]: Loss 0.64275
Validation: Loss 0.53105 Accuracy 1.00000
Epoch [ 2]: Loss 0.49565
Validation: Loss 0.44159 Accuracy 1.00000
Epoch [ 3]: Loss 0.41812
Validation: Loss 0.37267 Accuracy 1.00000
Epoch [ 4]: Loss 0.34997
Validation: Loss 0.30750 Accuracy 1.00000
Epoch [ 5]: Loss 0.28670
Validation: Loss 0.24610 Accuracy 1.00000
Epoch [ 6]: Loss 0.22590
Validation: Loss 0.19309 Accuracy 1.00000
Epoch [ 7]: Loss 0.17702
Validation: Loss 0.15184 Accuracy 1.00000
Epoch [ 8]: Loss 0.14052
Validation: Loss 0.12292 Accuracy 1.00000
Epoch [ 9]: Loss 0.11501
Validation: Loss 0.10253 Accuracy 1.00000
Epoch [ 10]: Loss 0.09670
Validation: Loss 0.08621 Accuracy 1.00000
Epoch [ 11]: Loss 0.08142
Validation: Loss 0.07268 Accuracy 1.00000
Epoch [ 12]: Loss 0.06876
Validation: Loss 0.06095 Accuracy 1.00000
Epoch [ 13]: Loss 0.05751
Validation: Loss 0.05108 Accuracy 1.00000
Epoch [ 14]: Loss 0.04885
Validation: Loss 0.04364 Accuracy 1.00000
Epoch [ 15]: Loss 0.04205
Validation: Loss 0.03822 Accuracy 1.00000
Epoch [ 16]: Loss 0.03735
Validation: Loss 0.03401 Accuracy 1.00000
Epoch [ 17]: Loss 0.03322
Validation: Loss 0.03063 Accuracy 1.00000
Epoch [ 18]: Loss 0.03002
Validation: Loss 0.02784 Accuracy 1.00000
Epoch [ 19]: Loss 0.02750
Validation: Loss 0.02549 Accuracy 1.00000
Epoch [ 20]: Loss 0.02529
Validation: Loss 0.02345 Accuracy 1.00000
Epoch [ 21]: Loss 0.02332
Validation: Loss 0.02168 Accuracy 1.00000
Epoch [ 22]: Loss 0.02173
Validation: Loss 0.02011 Accuracy 1.00000
Epoch [ 23]: Loss 0.02004
Validation: Loss 0.01870 Accuracy 1.00000
Epoch [ 24]: Loss 0.01866
Validation: Loss 0.01743 Accuracy 1.00000
Epoch [ 25]: Loss 0.01731
Validation: Loss 0.01627 Accuracy 1.00000We can also train the compact model with the exact same code!
ps_trained2, st_trained2 = main(SpiralClassifierCompact)┌ Warning: `replicate` doesn't work for `TaskLocalRNG`. Returning the same `TaskLocalRNG`.
└ @ LuxCore ~/work/Lux.jl/Lux.jl/lib/LuxCore/src/LuxCore.jl:18
Epoch [ 1]: Loss 0.46825
Validation: Loss 0.41625 Accuracy 1.00000
Epoch [ 2]: Loss 0.39574
Validation: Loss 0.34268 Accuracy 1.00000
Epoch [ 3]: Loss 0.32513
Validation: Loss 0.27711 Accuracy 1.00000
Epoch [ 4]: Loss 0.26287
Validation: Loss 0.22015 Accuracy 1.00000
Epoch [ 5]: Loss 0.20938
Validation: Loss 0.17555 Accuracy 1.00000
Epoch [ 6]: Loss 0.16576
Validation: Loss 0.13593 Accuracy 1.00000
Epoch [ 7]: Loss 0.12614
Validation: Loss 0.09868 Accuracy 1.00000
Epoch [ 8]: Loss 0.08896
Validation: Loss 0.06814 Accuracy 1.00000
Epoch [ 9]: Loss 0.06107
Validation: Loss 0.04859 Accuracy 1.00000
Epoch [ 10]: Loss 0.04532
Validation: Loss 0.03955 Accuracy 1.00000
Epoch [ 11]: Loss 0.03762
Validation: Loss 0.03344 Accuracy 1.00000
Epoch [ 12]: Loss 0.03173
Validation: Loss 0.02832 Accuracy 1.00000
Epoch [ 13]: Loss 0.02691
Validation: Loss 0.02415 Accuracy 1.00000
Epoch [ 14]: Loss 0.02298
Validation: Loss 0.02080 Accuracy 1.00000
Epoch [ 15]: Loss 0.01985
Validation: Loss 0.01816 Accuracy 1.00000
Epoch [ 16]: Loss 0.01738
Validation: Loss 0.01605 Accuracy 1.00000
Epoch [ 17]: Loss 0.01541
Validation: Loss 0.01433 Accuracy 1.00000
Epoch [ 18]: Loss 0.01379
Validation: Loss 0.01287 Accuracy 1.00000
Epoch [ 19]: Loss 0.01237
Validation: Loss 0.01153 Accuracy 1.00000
Epoch [ 20]: Loss 0.01104
Validation: Loss 0.01013 Accuracy 1.00000
Epoch [ 21]: Loss 0.00956
Validation: Loss 0.00849 Accuracy 1.00000
Epoch [ 22]: Loss 0.00801
Validation: Loss 0.00708 Accuracy 1.00000
Epoch [ 23]: Loss 0.00688
Validation: Loss 0.00624 Accuracy 1.00000
Epoch [ 24]: Loss 0.00611
Validation: Loss 0.00562 Accuracy 1.00000
Epoch [ 25]: Loss 0.00553
Validation: Loss 0.00507 Accuracy 1.00000Saving the Model
We can save the model using JLD2 (and any other serialization library of your choice) Note that we transfer the model to CPU before saving. Additionally, we recommend that you don't save the model struct and only save the parameters and states.
@save "trained_model.jld2" ps_trained st_trainedLet's try loading the model
@load "trained_model.jld2" ps_trained st_trained2-element Vector{Symbol}:
:ps_trained
:st_trainedAppendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(MLDataDevices)
if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
println()
AMDGPU.versioninfo()
end
endJulia Version 1.11.8
Commit cf1da5e20e3 (2025-11-06 17:49 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 4 × AMD EPYC 7763 64-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 4 default, 0 interactive, 2 GC (on 4 virtual cores)
Environment:
JULIA_DEBUG = Literate
LD_LIBRARY_PATH =
JULIA_NUM_THREADS = 4
JULIA_CPU_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0This page was generated using Literate.jl.