Julia & Lux for the Uninitiated
This is a quick intro to Lux loosely based on:
It introduces basic Julia programming, as well Zygote, a source-to-source automatic differentiation (AD) framework in Julia. We'll use these tools to build a very simple neural network. Let's start with importing Lux.jl
using Lux, RandomNow let us control the randomness in our code using proper Pseudo Random Number Generator (PRNG)
rng = Random.default_rng()
Random.seed!(rng, 0)Random.TaskLocalRNG()Arrays
The starting point for all of our models is the Array (sometimes referred to as a Tensor in other frameworks). This is really just a list of numbers, which might be arranged into a shape like a square. Let's write down an array with three elements.
x = [1, 2, 3]3-element Vector{Int64}:
1
2
3Here's a matrix – a square array with four elements.
x = [1 2; 3 4]2×2 Matrix{Int64}:
1 2
3 4We often work with arrays of thousands of elements, and don't usually write them down by hand. Here's how we can create an array of 5×3 = 15 elements, each a random number from zero to one.
x = rand(rng, 5, 3)5×3 Matrix{Float64}:
0.455238 0.746943 0.193291
0.547642 0.746801 0.116989
0.773354 0.97667 0.899766
0.940585 0.0869468 0.422918
0.0296477 0.351491 0.707534There's a few functions like this; try replacing rand with ones, zeros, or randn.
By default, Julia works stores numbers is a high-precision format called Float64. In ML we often don't need all those digits, and can ask Julia to work with Float32 instead. We can even ask for more digits using BigFloat.
x = rand(BigFloat, 5, 3)5×3 Matrix{BigFloat}:
0.981339 0.793159 0.459019
0.043883 0.624384 0.56055
0.164786 0.524008 0.0355555
0.414769 0.577181 0.621958
0.00823197 0.30215 0.655881x = rand(Float32, 5, 3)5×3 Matrix{Float32}:
0.567794 0.369178 0.342539
0.0985227 0.201145 0.587206
0.776598 0.148248 0.0851708
0.723731 0.0770206 0.839303
0.404728 0.230954 0.679087We can ask the array how many elements it has.
length(x)15Or, more specifically, what size it has.
size(x)(5, 3)We sometimes want to see some elements of the array on their own.
x5×3 Matrix{Float32}:
0.567794 0.369178 0.342539
0.0985227 0.201145 0.587206
0.776598 0.148248 0.0851708
0.723731 0.0770206 0.839303
0.404728 0.230954 0.679087x[2, 3]0.58720636f0This means get the second row and the third column. We can also get every row of the third column.
x[:, 3]5-element Vector{Float32}:
0.34253937
0.58720636
0.085170805
0.8393034
0.67908657We can add arrays, and subtract them, which adds or subtracts each element of the array.
x + x5×3 Matrix{Float32}:
1.13559 0.738356 0.685079
0.197045 0.40229 1.17441
1.5532 0.296496 0.170342
1.44746 0.154041 1.67861
0.809456 0.461908 1.35817x - x5×3 Matrix{Float32}:
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0Julia supports a feature called broadcasting, using the . syntax. This tiles small arrays (or single numbers) to fill bigger ones.
x .+ 15×3 Matrix{Float32}:
1.56779 1.36918 1.34254
1.09852 1.20114 1.58721
1.7766 1.14825 1.08517
1.72373 1.07702 1.8393
1.40473 1.23095 1.67909We can see Julia tile the column vector 1:5 across all rows of the larger array.
zeros(5, 5) .+ (1:5)5×5 Matrix{Float64}:
1.0 1.0 1.0 1.0 1.0
2.0 2.0 2.0 2.0 2.0
3.0 3.0 3.0 3.0 3.0
4.0 4.0 4.0 4.0 4.0
5.0 5.0 5.0 5.0 5.0The x' syntax is used to transpose a column 1:5 into an equivalent row, and Julia will tile that across columns.
zeros(5, 5) .+ (1:5)'5×5 Matrix{Float64}:
1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0We can use this to make a times table.
(1:5) .* (1:5)'5×5 Matrix{Int64}:
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25Finally, and importantly for machine learning, we can conveniently do things like matrix multiply.
W = randn(5, 10)
x = rand(10)
W * x5-element Vector{Float64}:
1.2197981041108443
-2.62625877100596
-2.8573820474674845
-2.4319346874291314
1.0108668577150213Julia's arrays are very powerful, and you can learn more about what they can do here.
CUDA Arrays
CUDA functionality is provided separately by the CUDA.jl package. If you have a GPU and LuxCUDA is installed, Lux will provide CUDA capabilities. For additional details on backends see the manual section.
You can manually add CUDA. Once CUDA is loaded you can move any array to the GPU with the cu function (or the gpu function exported by `Lux``), and it supports all of the above operations with the same syntax.
using LuxCUDA, LuxAMDGPU
if LuxCUDA.functional()
x_cu = cu(rand(5, 3))
@show x_cu
elseif LuxAMDGPU.functional() # Similarly, for AMDGPU
x_amd = roc(rand(5, 3))
@show x_amd
end5×3 CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}:
0.857126 0.681728 0.73806
0.191956 0.506485 0.622865
0.857257 0.663036 0.239756
0.54452 0.503186 0.27993
0.833518 0.975649 0.967811(Im)mutability
Lux as you might have read is Immutable by convention which means that the core library is built without any form of mutation and all functions are pure. However, we don't enforce it in any form. We do strongly recommend that users extending this framework for their respective applications don't mutate their arrays.
x = reshape(1:8, 2, 4)2×4 reshape(::UnitRange{Int64}, 2, 4) with eltype Int64:
1 3 5 7
2 4 6 8To update this array, we should first copy the array.
x_copy = copy(x)
view(x_copy, :, 1) .= 0
println("Original Array ", x)
println("Mutated Array ", x_copy)Original Array [1 3 5 7; 2 4 6 8]
Mutated Array [0 3 5 7; 0 4 6 8]Note that our current default AD engine (Zygote) is unable to differentiate through this mutation, however, for these specialized cases it is quite trivial to write custom backward passes. (This problem will be fixed once we move towards Enzyme.jl)
Managing Randomness
We rely on the Julia StdLib Random for managing the randomness in our execution. First, we create an PRNG (pseudorandom number generator) and seed it.
rng = Xoshiro(0) # Creates a Xoshiro PRNG with seed 0Random.Xoshiro(0xdb2fa90498613fdf, 0x48d73dc42d195740, 0x8c49bc52dc8a77ea, 0x1911b814c02405e8, 0x22a21880af5dc689)If we call any function that relies on rng and uses it via randn, rand, etc. rng will be mutated. As we have already established we care a lot about immutability, hence we should use Lux.replicate on PRNGs before using them.
First, let us run a random number generator 3 times with the replicated rng.
random_vectors = Vector{Vector{Float64}}(undef, 3)
for i in 1:3
random_vectors[i] = rand(Lux.replicate(rng), 10)
println("Iteration $i ", random_vectors[i])
end
@assert random_vectors[1] ≈ random_vectors[2] ≈ random_vectors[3]Iteration 1 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]
Iteration 2 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]
Iteration 3 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]As expected we get the same output. We can remove the replicate call and we will get different outputs.
for i in 1:3
println("Iteration $i ", rand(rng, 10))
endIteration 1 [0.4552384158732863, 0.5476424498276177, 0.7733535276924052, 0.9405848223512736, 0.02964765308691042, 0.74694291453392, 0.7468008914093891, 0.9766699015845924, 0.08694684883050086, 0.35149138733595564]
Iteration 2 [0.018743665453639813, 0.8601828553599953, 0.6556360448565952, 0.7746656838366666, 0.7817315740767116, 0.5553797706980106, 0.1261990389976131, 0.4488101521328277, 0.624383955429775, 0.05657739601024536]
Iteration 3 [0.19597391412112541, 0.6830945313415872, 0.6776220912718907, 0.6456416023530093, 0.6340362477836592, 0.5595843665394066, 0.5675557670686644, 0.34351700231383653, 0.7237308297251812, 0.3691778381831775]Automatic Differentiation
Julia has quite a few (maybe too many) AD tools. For the purpose of this tutorial, we will use:
ForwardDiff.jl – For Jacobian-Vector Product (JVP)
Zygote.jl – For Vector-Jacobian Product (VJP)
Slight Detour: We have had several questions regarding if we will be considering any other AD system for the reverse-diff backend. For now we will stick to Zygote.jl, however once we have tested Lux extensively with Enzyme.jl, we will make the switch.
Even though, theoretically, a VJP (Vector-Jacobian product - reverse autodiff) and a JVP (Jacobian-Vector product - forward-mode autodiff) are similar—they compute a product of a Jacobian and a vector—they differ by the computational complexity of the operation. In short, when you have a large number of parameters (hence a wide matrix), a JVP is less efficient computationally than a VJP, and, conversely, a JVP is more efficient when the Jacobian matrix is a tall matrix.
using ComponentArrays, ForwardDiff, ZygoteGradients
For our first example, consider a simple function computing
f(x) = x' * x / 2
∇f(x) = x # `∇` can be typed as `\nabla<TAB>`
v = randn(rng, Float32, 4)4-element Vector{Float32}:
-0.4051151
-0.4593922
0.92155594
1.1871622Let's use ForwardDiff and Zygote to compute the gradients.
println("Actual Gradient: ", ∇f(v))
println("Computed Gradient via Reverse Mode AD (Zygote): ", only(Zygote.gradient(f, v)))
println("Computed Gradient via Forward Mode AD (ForwardDiff): ", ForwardDiff.gradient(f, v))Actual Gradient: Float32[-0.4051151, -0.4593922, 0.92155594, 1.1871622]
Computed Gradient via Reverse Mode AD (Zygote): Float32[-0.4051151, -0.4593922, 0.92155594, 1.1871622]
Computed Gradient via Forward Mode AD (ForwardDiff): Float32[-0.4051151, -0.4593922, 0.92155594, 1.1871622]Note that AD.gradient will only work for scalar valued outputs.
Jacobian-Vector Product
I will defer the discussion on forward-mode AD to https://book.sciml.ai/notes/08-Forward-Mode_Automatic_Differentiation_(AD)_via_High_Dimensional_Algebras/. Here let us just look at a mini example on how to use it.
f(x) = x .* x ./ 2
x = randn(rng, Float32, 5)
v = ones(Float32, 5)5-element Vector{Float32}:
1.0
1.0
1.0
1.0
1.0Construct the pushforward function. We will write out the function here but in practice we recommend using SparseDiffTools.auto_jacvec!
First we need to create a Tag for ForwardDiff. It is enough to know that this is something that you must do. For more details, see the ForwardDiff Documentation!
struct TestTag endGoing in the details of what is function is doing is beyond the scope of this tutorial. But in short, it is constructing a new Dual Vector with the partials set to the input to the pushforward function. When this is propagated through the original function we get the value and the jvp
function pushforward_forwarddiff(f, x)
T = eltype(x)
function pushforward(v)
v_ = reshape(v, axes(x))
y = ForwardDiff.Dual{
ForwardDiff.Tag{TestTag, T}, T, 1}.(x, ForwardDiff.Partials.(tuple.(v_)))
res = vec(f(y))
return ForwardDiff.value.(res), vec(ForwardDiff.partials.(res, 1))
end
return pushforward
end
pf_f = pushforward_forwarddiff(f, x)(::Main.var"##225".var"#pushforward#1"{typeof(Main.var"##225".f), Vector{Float32}, DataType}) (generic function with 1 method)Compute the jvp.
val, jvp = pf_f(v)
println("Computed Value: f(", x, ") = ", val)
println("JVP: ", jvp[1])Computed Value: f(Float32[-0.877497, 1.1953009, -0.057005208, 0.25055695, 0.09351656]) = Float32[0.3850005, 0.71437216, 0.0016247969, 0.031389393, 0.0043726736]
JVP: -0.877497Vector-Jacobian Product
Using the same function and inputs, let us compute the VJP.
val, pb_f = Zygote.pullback(f, x)(Float32[0.3850005, 0.71437216, 0.0016247969, 0.031389393, 0.0043726736], Zygote.var"#75#76"{Zygote.Pullback{Tuple{typeof(Main.var"##225".f), Vector{Float32}}, Tuple{Zygote.var"#3796#back#1207"{Zygote.var"#1203#1206"{Vector{Float32}, Vector{Float32}}}, Zygote.var"#3860#back#1233"{Zygote.ZBack{ChainRules.var"#slash_pullback_scalar#1558"{Vector{Float32}, Int64}}}, Zygote.Pullback{Tuple{typeof(Base.Broadcast.materialize), Vector{Float32}}, Tuple{}}}}}(∂(f)))Compute the vjp.
vjp = only(pb_f(v))
println("Computed Value: f(", x, ") = ", val)
println("VJP: ", vjp[1])Computed Value: f(Float32[-0.877497, 1.1953009, -0.057005208, 0.25055695, 0.09351656]) = Float32[0.3850005, 0.71437216, 0.0016247969, 0.031389393, 0.0043726736]
VJP: -0.877497Linear Regression
Finally, now let us consider a linear regression problem. From a set of data-points
We can write f from scratch, but to demonstrate Lux, let us use the Dense layer.
model = Dense(10 => 5)
rng = Random.default_rng()
Random.seed!(rng, 0)Random.TaskLocalRNG()Let us initialize the parameters and states (in this case it is empty) for the model.
ps, st = Lux.setup(rng, model)
ps = ps |> ComponentArrayComponentVector{Float32}(weight = Float32[-0.5583162 0.3457679 0.50863314 0.60294497 0.23095794 0.16602759 5.5791984f-6 0.61324424 -0.35419345 0.039559156; -0.05661944 -0.4899126 0.31236076 0.47100115 -0.5062956 -0.20445547 -0.03762182 0.5370978 0.22614014 0.27704597; 0.5198015 0.55730057 -0.34535396 -0.21587563 -0.12729146 -0.51019937 0.46597028 0.2918885 0.20849374 -0.4068233; 0.06026341 -0.11202827 0.31218112 0.14536527 -0.3413506 0.40088427 -0.48716235 -0.15096173 0.42526972 -0.3576447; 0.23414856 -0.5949539 -0.26137677 0.21756552 0.34443143 0.25046515 -0.049256783 -0.48404032 0.08254115 -0.5224755], bias = Float32[0.0; 0.0; 0.0; 0.0; 0.0;;])Set problem dimensions.
n_samples = 20
x_dim = 10
y_dim = 55Generate random ground truth W and b.
W = randn(rng, Float32, y_dim, x_dim)
b = randn(rng, Float32, y_dim)5-element Vector{Float32}:
0.68468636
-0.57578707
0.0594993
-0.9436797
1.5164032Generate samples with additional noise.
x_samples = randn(rng, Float32, x_dim, n_samples)
y_samples = W * x_samples .+ b .+ 0.01f0 .* randn(rng, Float32, y_dim, n_samples)
println("x shape: ", size(x_samples), "; y shape: ", size(y_samples))x shape: (10, 20); y shape: (5, 20)For updating our parameters let's use Optimisers.jl. We will use Stochastic Gradient Descent (SGD) with a learning rate of 0.01.
using Optimisers
opt = Optimisers.Descent(0.01f0)Descent(0.01f0)Initialize the initial state of the optimiser
opt_state = Optimisers.setup(opt, ps)Leaf(Descent(0.01), nothing)Define the loss function
function mse(model, ps, st, X, y)
y_pred, st_new = model(X, ps, st)
return sum(abs2, y_pred .- y), st_new
end
mse(weight, bias, X, y) = sum(abs2, weight * X .+ bias .- y)
loss_function(ps, X, y) = mse(model, ps, st, X, y)
println("Loss Value with ground true parameters: ", mse(W, b, x_samples, y_samples))
for i in 1:100
# In actual code, don't use globals. But here I will simply for the sake of
# demonstration
global ps, st, opt_state
# Compute the gradient using the pullback API to update the states
(loss, st), pb_f = Zygote.pullback(loss_function, ps, x_samples, y_samples)
# We pass nothing as the seed for `st`, since we don't want to propagate any gradient
# for st
gs = pb_f((one(loss), nothing))[1]
# Update model parameters
# `Optimisers.update` can be used if mutation is not desired
opt_state, ps = Optimisers.update!(opt_state, ps, gs)
(i % 10 == 1 || i == 100) && println(lazy"Loss Value after $i iterations: $loss")
endLoss Value with ground true parameters: 0.009175307
┌ Warning: Assignment to `pb_f` in soft scope is ambiguous because a global variable by the same name exists: `pb_f` will be treated as a new local. Disambiguate by using `local pb_f` to suppress this warning or `global pb_f` to assign to the existing global variable.
└ @ /var/lib/buildkite-agent/builds/gpuci-1/julialang/lux-dot-jl/docs/src/tutorials/beginner/1_Basics.md:15
Loss Value after 1 iterations: 812.3374
Loss Value after 11 iterations: 5.479181
Loss Value after 21 iterations: 0.806523
Loss Value after 31 iterations: 0.1775011
Loss Value after 41 iterations: 0.046897847
Loss Value after 51 iterations: 0.015412594
Loss Value after 61 iterations: 0.007253055
Loss Value after 71 iterations: 0.0050410302
Loss Value after 81 iterations: 0.0044205473
Loss Value after 91 iterations: 0.004241652
Loss Value after 100 iterations: 0.0041917767Appendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(LuxCUDA) && CUDA.functional(); println(); CUDA.versioninfo(); end
if @isdefined(LuxAMDGPU) && LuxAMDGPU.functional(); println(); AMDGPU.versioninfo(); endJulia Version 1.10.2
Commit bd47eca2c8a (2024-03-01 10:14 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 48 × AMD EPYC 7402 24-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-15.0.7 (ORCJIT, znver2)
Threads: 48 default, 0 interactive, 24 GC (on 2 virtual cores)
Environment:
LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
JULIA_PROJECT = /var/lib/buildkite-agent/builds/gpuci-1/julialang/lux-dot-jl/docs
JULIA_AMDGPU_LOGGING_ENABLED = true
JULIA_DEBUG = Literate
JULIA_CPU_THREADS = 2
JULIA_NUM_THREADS = 48
JULIA_LOAD_PATH = @:@v#.#:@stdlib
JULIA_CUDA_HARD_MEMORY_LIMIT = 25%
CUDA runtime 12.3, artifact installation
CUDA driver 12.4
NVIDIA driver 550.54.15
CUDA libraries:
- CUBLAS: 12.3.4
- CURAND: 10.3.4
- CUFFT: 11.0.12
- CUSOLVER: 11.5.4
- CUSPARSE: 12.2.0
- CUPTI: 21.0.0
- NVML: 12.0.0+550.54.15
Julia packages:
- CUDA: 5.2.0
- CUDA_Driver_jll: 0.7.0+1
- CUDA_Runtime_jll: 0.11.1+0
Toolchain:
- Julia: 1.10.2
- LLVM: 15.0.7
Environment:
- JULIA_CUDA_HARD_MEMORY_LIMIT: 25%
1 device:
0: NVIDIA A100-PCIE-40GB MIG 1g.5gb (sm_80, 4.518 GiB / 4.750 GiB available)
┌ Warning: LuxAMDGPU is loaded but the AMDGPU is not functional.
└ @ LuxAMDGPU ~/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6/packages/LuxAMDGPU/sGa0S/src/LuxAMDGPU.jl:19This page was generated using Literate.jl.