MNIST Classification with SimpleChains
SimpleChains.jl is an excellent framework for training small neural networks. In this tutorial we will demonstrate how to use the same API as Lux.jl to train a model using SimpleChains.jl. We will use the tutorial from SimpleChains.jl as a reference.
Package Imports
using Lux, ADTypes, MLUtils, Optimisers, Zygote, OneHotArrays, Random, Statistics, Printf
import MLDatasets: MNIST
import SimpleChains: static
Loading MNIST
function loadmnist(batchsize, train_split)
# Load MNIST
N = 2000
dataset = MNIST(; split=:train)
imgs = dataset.features[:, :, 1:N]
labels_raw = dataset.targets[1:N]
# Process images into (H,W,C,BS) batches
x_data = Float32.(reshape(imgs, size(imgs, 1), size(imgs, 2), 1, size(imgs, 3)))
y_data = onehotbatch(labels_raw, 0:9)
(x_train, y_train), (x_test, y_test) = splitobs((x_data, y_data); at=train_split)
return (
# Use DataLoader to automatically minibatch and shuffle the data
DataLoader(collect.((x_train, y_train)); batchsize, shuffle=true),
# Don't shuffle the test data
DataLoader(collect.((x_test, y_test)); batchsize, shuffle=false))
end
loadmnist (generic function with 1 method)
Define the Model
lux_model = Chain(Conv((5, 5), 1 => 6, relu), MaxPool((2, 2)),
Conv((5, 5), 6 => 16, relu), MaxPool((2, 2)), FlattenLayer(3),
Chain(Dense(256 => 128, relu), Dense(128 => 84, relu), Dense(84 => 10)))
Chain(
layer_1 = Conv((5, 5), 1 => 6, relu), # 156 parameters
layer_2 = MaxPool((2, 2)),
layer_3 = Conv((5, 5), 6 => 16, relu), # 2_416 parameters
layer_4 = MaxPool((2, 2)),
layer_5 = FlattenLayer(),
layer_6 = Dense(256 => 128, relu), # 32_896 parameters
layer_7 = Dense(128 => 84, relu), # 10_836 parameters
layer_8 = Dense(84 => 10), # 850 parameters
) # Total: 47_154 parameters,
# plus 0 states.
We now need to convert the lux_model to SimpleChains.jl. We need to do this by defining the ToSimpleChainsAdaptor
and providing the input dimensions.
adaptor = ToSimpleChainsAdaptor((static(28), static(28), static(1)))
simple_chains_model = adaptor(lux_model)
SimpleChainsLayer() # 47_154 parameters
Helper Functions
logitcrossentropy(y_pred, y) = mean(-sum(y .* logsoftmax(y_pred); dims=1))
function loss(model, ps, st, (x, y))
y_pred, st = model(x, ps, st)
return logitcrossentropy(y_pred, y), st, (;)
end
function accuracy(model, ps, st, dataloader)
total_correct, total = 0, 0
st = Lux.testmode(st)
for (x, y) in dataloader
target_class = onecold(y)
predicted_class = onecold(Array(first(model(x, ps, st))))
total_correct += sum(target_class .== predicted_class)
total += length(target_class)
end
return total_correct / total
end
accuracy (generic function with 1 method)
Define the Training Loop
function train(model; rng=Xoshiro(0), kwargs...)
train_dataloader, test_dataloader = loadmnist(128, 0.9)
train_state = Lux.Experimental.TrainState(
rng, model, Adam(3.0f-4); transform_variables=identity)
### Lets train the model
nepochs = 10
for epoch in 1:nepochs
stime = time()
for (x, y) in train_dataloader
(gs, _, _, train_state) = Lux.Experimental.compute_gradients(
AutoZygote(), loss, (x, y), train_state)
train_state = Lux.Experimental.apply_gradients(train_state, gs)
end
ttime = time() - stime
tr_acc = accuracy(
model, train_state.parameters, train_state.states, train_dataloader) * 100
te_acc = accuracy(
model, train_state.parameters, train_state.states, test_dataloader) * 100
@printf "[%2d/%2d] \t Time %.2fs \t Training Accuracy: %.2f%% \t Test Accuracy: %.2f%%\n" epoch nepochs ttime tr_acc te_acc
end
end
train (generic function with 1 method)
Finally Training the Model
First we will train the Lux model
train(lux_model)
[ 1/10] Time 84.57s Training Accuracy: 24.11% Test Accuracy: 24.00%
[ 2/10] Time 48.82s Training Accuracy: 46.89% Test Accuracy: 47.50%
[ 3/10] Time 48.37s Training Accuracy: 68.06% Test Accuracy: 67.50%
[ 4/10] Time 48.83s Training Accuracy: 74.33% Test Accuracy: 72.50%
[ 5/10] Time 48.44s Training Accuracy: 80.61% Test Accuracy: 79.00%
[ 6/10] Time 44.90s Training Accuracy: 82.83% Test Accuracy: 82.50%
[ 7/10] Time 47.44s Training Accuracy: 84.72% Test Accuracy: 83.00%
[ 8/10] Time 49.94s Training Accuracy: 85.61% Test Accuracy: 84.00%
[ 9/10] Time 49.01s Training Accuracy: 85.83% Test Accuracy: 84.50%
[10/10] Time 48.72s Training Accuracy: 87.61% Test Accuracy: 85.50%
Now we will train the SimpleChains model
train(simple_chains_model)
[ 1/10] Time 885.21s Training Accuracy: 29.78% Test Accuracy: 27.00%
[ 2/10] Time 15.95s Training Accuracy: 40.83% Test Accuracy: 38.00%
[ 3/10] Time 15.94s Training Accuracy: 60.06% Test Accuracy: 55.50%
[ 4/10] Time 15.94s Training Accuracy: 66.33% Test Accuracy: 62.00%
[ 5/10] Time 15.94s Training Accuracy: 74.28% Test Accuracy: 71.00%
[ 6/10] Time 15.95s Training Accuracy: 80.33% Test Accuracy: 76.00%
[ 7/10] Time 15.94s Training Accuracy: 82.94% Test Accuracy: 81.00%
[ 8/10] Time 15.96s Training Accuracy: 83.61% Test Accuracy: 80.50%
[ 9/10] Time 15.95s Training Accuracy: 85.61% Test Accuracy: 82.00%
[10/10] Time 15.94s Training Accuracy: 87.06% Test Accuracy: 84.00%
On my local machine we see a 3-4x speedup when using SimpleChains.jl. The conditions of the server this documentation is being built on is not ideal for CPU benchmarking hence, the speedup may not be as significant and even there might be regressions.
Appendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(LuxCUDA) && CUDA.functional(); println(); CUDA.versioninfo(); end
if @isdefined(LuxAMDGPU) && LuxAMDGPU.functional(); println(); AMDGPU.versioninfo(); end
Julia Version 1.10.2
Commit bd47eca2c8a (2024-03-01 10:14 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 48 × AMD EPYC 7402 24-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-15.0.7 (ORCJIT, znver2)
Threads: 48 default, 0 interactive, 24 GC (on 2 virtual cores)
Environment:
LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
JULIA_PROJECT = /var/lib/buildkite-agent/builds/gpuci-1/julialang/lux-dot-jl/docs
JULIA_AMDGPU_LOGGING_ENABLED = true
JULIA_DEBUG = Literate
JULIA_CPU_THREADS = 2
JULIA_NUM_THREADS = 48
JULIA_LOAD_PATH = @:@v#.#:@stdlib
JULIA_CUDA_HARD_MEMORY_LIMIT = 25%
This page was generated using Literate.jl.