Fitting a Polynomial using MLP
In this tutorial we will fit a MultiLayer Perceptron (MLP) on data generated from a polynomial.
Package Imports
using Lux, ADTypes, LuxAMDGPU, LuxCUDA, Optimisers, Printf, Random, Statistics, Zygote
using CairoMakie
Dataset
Generate 128 datapoints from the polynomial
function generate_data(rng::AbstractRNG)
x = reshape(collect(range(-2.0f0, 2.0f0, 128)), (1, 128))
y = evalpoly.(x, ((0, -2, 1),)) .+ randn(rng, (1, 128)) .* 0.1f0
return (x, y)
end
generate_data (generic function with 1 method)
Initialize the random number generator and fetch the dataset.
rng = MersenneTwister()
Random.seed!(rng, 12345)
(x, y) = generate_data(rng)
(Float32[-2.0 -1.968504 -1.9370079 -1.9055119 -1.8740157 -1.8425196 -1.8110236 -1.7795275 -1.7480315 -1.7165354 -1.6850394 -1.6535434 -1.6220472 -1.5905511 -1.5590551 -1.527559 -1.496063 -1.464567 -1.4330709 -1.4015749 -1.3700787 -1.3385826 -1.3070866 -1.2755905 -1.2440945 -1.2125984 -1.1811024 -1.1496063 -1.1181102 -1.0866141 -1.0551181 -1.023622 -0.992126 -0.96062994 -0.92913383 -0.8976378 -0.86614174 -0.8346457 -0.8031496 -0.77165353 -0.7401575 -0.70866144 -0.6771653 -0.6456693 -0.61417323 -0.5826772 -0.5511811 -0.51968503 -0.48818898 -0.4566929 -0.42519686 -0.39370078 -0.36220473 -0.33070865 -0.2992126 -0.26771653 -0.23622048 -0.20472442 -0.17322835 -0.14173229 -0.11023622 -0.07874016 -0.047244094 -0.015748031 0.015748031 0.047244094 0.07874016 0.11023622 0.14173229 0.17322835 0.20472442 0.23622048 0.26771653 0.2992126 0.33070865 0.36220473 0.39370078 0.42519686 0.4566929 0.48818898 0.51968503 0.5511811 0.5826772 0.61417323 0.6456693 0.6771653 0.70866144 0.7401575 0.77165353 0.8031496 0.8346457 0.86614174 0.8976378 0.92913383 0.96062994 0.992126 1.023622 1.0551181 1.0866141 1.1181102 1.1496063 1.1811024 1.2125984 1.2440945 1.2755905 1.3070866 1.3385826 1.3700787 1.4015749 1.4330709 1.464567 1.496063 1.527559 1.5590551 1.5905511 1.6220472 1.6535434 1.6850394 1.7165354 1.7480315 1.7795275 1.8110236 1.8425196 1.8740157 1.9055119 1.9370079 1.968504 2.0], [8.11723579535073 7.8972862806322315 7.667572185253954 7.493641443881164 7.328542256257643 7.1081451188446065 6.754145700236098 6.73844851250885 6.698323804024227 6.3637494708272655 6.270117709011731 6.2419372753805 5.816280759896085 5.718319527208828 5.741347639508506 5.258118446989299 5.268165780092538 5.195746082529355 5.032704772846244 4.733409783966572 4.520239616672976 4.369386593776045 4.107888442446331 4.182845399340577 4.002249800810884 3.8969011895086174 3.910820824989613 3.646440085736948 3.3343752660206305 3.3980378243437745 3.1887817476268587 2.9930802717826603 3.018980452144523 2.690492107796345 2.8576513349182378 2.4778283273281008 2.452401424624867 2.401875695877283 2.2896425232872755 2.2812518842985035 1.9742292519472466 1.7663454774622869 1.7829663021691418 1.6248666914928798 1.635090436697959 1.4887378757184528 1.4396068206428336 1.5047223947023354 1.2439428212858357 1.1770575798169982 1.0519113712665473 0.8008025630753797 0.8011788202541421 0.7702484835053167 0.9010273188596704 0.48114290312426095 0.4605012716399809 0.42308333113261615 0.2890108900859864 0.3324716507588617 0.2126899641074972 0.2560113968739265 0.08350192481301627 0.046225582753114294 -0.16118930624459 -0.013928769802494537 -0.030805824695545894 -0.10629780224701328 -0.17643440564041185 -0.2494508100897751 -0.3322350480467481 -0.45414851684613733 -0.6965624404632386 -0.38861245182183696 -0.4708530312086873 -0.6274991143463677 -0.5617763080815885 -0.6438360803492721 -0.7565600800322707 -0.5662591600023589 -0.6591533520776037 -0.9166793344639054 -0.8520467822193756 -0.9507226194240974 -1.0248823046771698 -0.97772916365376 -0.8199294436184201 -0.9080088282844027 -0.9682665790685976 -1.031816361263047 -0.9296919748814573 -1.1145618706755287 -1.2139119971536336 -1.0157839085777947 -0.9417175810509869 -0.9783498813733602 -0.9123675448444001 -1.138088633455826 -1.1212038088290894 -0.911429094488635 -1.023486657428913 -0.9287179111905346 -1.0396518660677925 -1.0370046468920306 -0.9846375721966646 -0.833026219703481 -0.8200258902651266 -0.789500663251252 -0.9068267920931062 -0.7284236770750803 -0.7093213401368348 -0.7048862544448803 -0.6215870033126495 -0.5892481295457608 -0.8462913756395639 -0.5544688796856879 -0.5805399434794658 -0.5761396334948753 -0.5851955365208916 -0.5561461874821676 -0.1969227628706652 -0.34073487813889014 -0.2738635064414512 -0.1425063756241582 -0.18330825579933746 -0.054321035831595324 -0.21213293699653427 0.049985105882301])
Let's visualize the dataset
begin
fig = Figure()
ax = CairoMakie.Axis(fig[1, 1]; xlabel="x", ylabel="y")
l = lines!(ax, x[1, :], x -> evalpoly(x, (0, -2, 1)); linewidth=3, color=:blue)
s = scatter!(ax, x[1, :], y[1, :]; markersize=12, alpha=0.5,
color=:orange, strokecolor=:black, strokewidth=2)
axislegend(ax, [l, s], ["True Quadratic Function", "Data Points"])
fig
end
Neural Network
For this problem, you should not be using a neural network. But let's still do that!
model = Chain(Dense(1 => 16, relu), Dense(16 => 1))
Chain(
layer_1 = Dense(1 => 16, relu), # 32 parameters
layer_2 = Dense(16 => 1), # 17 parameters
) # Total: 49 parameters,
# plus 0 states.
Optimizer
We will use Adam from Optimisers.jl
opt = Adam(0.03f0)
Adam(0.03, (0.9, 0.999), 1.0e-8)
Loss Function
We will use the Lux.Training
API so we need to ensure that our loss function takes 4 inputs – model, parameters, states and data. The function must return 3 values – loss, updated_state, and any computed statistics.
function loss_function(model, ps, st, data)
y_pred, st = Lux.apply(model, data[1], ps, st)
mse_loss = mean(abs2, y_pred .- data[2])
return mse_loss, st, ()
end
loss_function (generic function with 1 method)
Training
First we will create a Lux.Experimental.TrainState
which is essentially a convenience wrapper over parameters, states and optimizer states.
tstate = Lux.Experimental.TrainState(rng, model, opt)
Lux.Experimental.TrainState{Lux.Chain{@NamedTuple{layer_1::Lux.Dense{true, typeof(NNlib.relu), typeof(WeightInitializers.glorot_uniform), typeof(WeightInitializers.zeros32)}, layer_2::Lux.Dense{true, typeof(identity), typeof(WeightInitializers.glorot_uniform), typeof(WeightInitializers.zeros32)}}, Nothing}, @NamedTuple{layer_1::@NamedTuple{weight::CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, bias::CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}}, layer_2::@NamedTuple{weight::CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, bias::CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}}}, @NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}}, @NamedTuple{layer_1::@NamedTuple{weight::Optimisers.Leaf{Optimisers.Adam, Tuple{CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, Tuple{Float32, Float32}}}, bias::Optimisers.Leaf{Optimisers.Adam, Tuple{CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, Tuple{Float32, Float32}}}}, layer_2::@NamedTuple{weight::Optimisers.Leaf{Optimisers.Adam, Tuple{CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, Tuple{Float32, Float32}}}, bias::Optimisers.Leaf{Optimisers.Adam, Tuple{CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, Tuple{Float32, Float32}}}}}}(Chain(), (layer_1 = (weight = Float32[0.36222202; 0.23371002; -0.49825558; -0.18142056; -0.13757975; -0.50849473; 0.13773328; -0.035294008; 0.21778254; 0.04964345; -0.56594235; -0.45329624; -0.08787567; 0.5648949; 0.5260752; -0.07562564;;], bias = Float32[0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0;;]), layer_2 = (weight = Float32[-0.14330137 -0.39328107 -0.18253882 -0.55998546 -0.5919335 -0.3069779 -0.39085856 -0.4838621 0.3979575 0.5851314 0.24242708 0.35374007 0.10175798 0.29761198 -0.34761065 -0.05758927], bias = Float32[0.0;;])), (layer_1 = NamedTuple(), layer_2 = NamedTuple()), (layer_1 = (weight = Leaf(Adam(0.03, (0.9, 0.999), 1.0e-8), (Float32[0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0;;], Float32[0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0;;], (0.9, 0.999))), bias = Leaf(Adam(0.03, (0.9, 0.999), 1.0e-8), (Float32[0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0;;], Float32[0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0;;], (0.9, 0.999)))), layer_2 = (weight = Leaf(Adam(0.03, (0.9, 0.999), 1.0e-8), (Float32[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0], Float32[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0], (0.9, 0.999))), bias = Leaf(Adam(0.03, (0.9, 0.999), 1.0e-8), (Float32[0.0;;], Float32[0.0;;], (0.9, 0.999))))), 0)
Now we will use Zygote for our AD requirements.
vjp_rule = AutoZygote()
ADTypes.AutoZygote()
Finally the training loop.
function main(tstate::Lux.Experimental.TrainState, vjp, data, epochs)
data = data .|> gpu_device()
for epoch in 1:epochs
grads, loss, stats, tstate = Lux.Training.compute_gradients(
vjp, loss_function, data, tstate)
if epoch % 50 == 1 || epoch == epochs
@printf "Epoch: %3d \t Loss: %.5g\n" epoch loss
end
tstate = Lux.Training.apply_gradients(tstate, grads)
end
return tstate
end
dev_cpu = cpu_device()
dev_gpu = gpu_device()
tstate = main(tstate, vjp_rule, (x, y), 250)
y_pred = dev_cpu(Lux.apply(tstate.model, dev_gpu(x), tstate.parameters, tstate.states)[1])
Epoch: 1 Loss: 9.4373
Epoch: 51 Loss: 0.086228
Epoch: 101 Loss: 0.033642
Epoch: 151 Loss: 0.021989
Epoch: 201 Loss: 0.017344
Epoch: 250 Loss: 0.013794
Let's plot the results
begin
fig = Figure()
ax = CairoMakie.Axis(fig[1, 1]; xlabel="x", ylabel="y")
l = lines!(ax, x[1, :], x -> evalpoly(x, (0, -2, 1)); linewidth=3)
s1 = scatter!(ax, x[1, :], y[1, :]; markersize=12, alpha=0.5,
color=:orange, strokecolor=:black, strokewidth=2)
s2 = scatter!(ax, x[1, :], y_pred[1, :]; markersize=12, alpha=0.5,
color=:green, strokecolor=:black, strokewidth=2)
axislegend(ax, [l, s1, s2], ["True Quadratic Function", "Actual Data", "Predictions"])
fig
end
Appendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(LuxCUDA) && CUDA.functional(); println(); CUDA.versioninfo(); end
if @isdefined(LuxAMDGPU) && LuxAMDGPU.functional(); println(); AMDGPU.versioninfo(); end
Julia Version 1.10.2
Commit bd47eca2c8a (2024-03-01 10:14 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 48 × AMD EPYC 7402 24-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-15.0.7 (ORCJIT, znver2)
Threads: 48 default, 0 interactive, 24 GC (on 2 virtual cores)
Environment:
LD_LIBRARY_PATH = /usr/local/nvidia/lib:/usr/local/nvidia/lib64
JULIA_DEPOT_PATH = /root/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6
JULIA_PROJECT = /var/lib/buildkite-agent/builds/gpuci-1/julialang/lux-dot-jl/docs
JULIA_AMDGPU_LOGGING_ENABLED = true
JULIA_DEBUG = Literate
JULIA_CPU_THREADS = 2
JULIA_NUM_THREADS = 48
JULIA_LOAD_PATH = @:@v#.#:@stdlib
JULIA_CUDA_HARD_MEMORY_LIMIT = 25%
CUDA runtime 12.3, artifact installation
CUDA driver 12.4
NVIDIA driver 550.54.15
CUDA libraries:
- CUBLAS: 12.3.4
- CURAND: 10.3.4
- CUFFT: 11.0.12
- CUSOLVER: 11.5.4
- CUSPARSE: 12.2.0
- CUPTI: 21.0.0
- NVML: 12.0.0+550.54.15
Julia packages:
- CUDA: 5.2.0
- CUDA_Driver_jll: 0.7.0+1
- CUDA_Runtime_jll: 0.11.1+0
Toolchain:
- Julia: 1.10.2
- LLVM: 15.0.7
Environment:
- JULIA_CUDA_HARD_MEMORY_LIMIT: 25%
1 device:
0: NVIDIA A100-PCIE-40GB MIG 1g.5gb (sm_80, 4.600 GiB / 4.750 GiB available)
┌ Warning: LuxAMDGPU is loaded but the AMDGPU is not functional.
└ @ LuxAMDGPU ~/.cache/julia-buildkite-plugin/depots/01872db4-8c79-43af-ab7d-12abac4f24f6/packages/LuxAMDGPU/sGa0S/src/LuxAMDGPU.jl:19
This page was generated using Literate.jl.